IL1RAPL1 Associated with Mental Retardation and Autism Regulates the Formation and Stabilization of Glutamatergic Synapses of Cortical Neurons through RhoA Signaling Pathway

Interleukin-1 receptor accessory protein-like 1 (IL1RAPL1) is associated with X-linked mental retardation and autism spectrum disorder. We found that IL1RAPL1 regulates synapse formation of cortical neurons. To investigate how IL1RAPL1 controls synapse formation, we here screened IL1RAPL1-interactin...

Full description

Bibliographic Details
Main Authors: Hayashi, Takashi, Yoshida, Tomoyuki, Ra, Moonjin, Taguchi, Ryo, Mishina, Masayoshi
Format: Online
Language:English
Published: Public Library of Science 2013
Online Access:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3681934/
id pubmed-3681934
recordtype oai_dc
spelling pubmed-36819342013-06-19 IL1RAPL1 Associated with Mental Retardation and Autism Regulates the Formation and Stabilization of Glutamatergic Synapses of Cortical Neurons through RhoA Signaling Pathway Hayashi, Takashi Yoshida, Tomoyuki Ra, Moonjin Taguchi, Ryo Mishina, Masayoshi Research Article Interleukin-1 receptor accessory protein-like 1 (IL1RAPL1) is associated with X-linked mental retardation and autism spectrum disorder. We found that IL1RAPL1 regulates synapse formation of cortical neurons. To investigate how IL1RAPL1 controls synapse formation, we here screened IL1RAPL1-interacting proteins by affinity chromatography and mass spectroscopy. IL1RAPL1 interacted with Mcf2-like (Mcf2l), a Rho guanine nucleotide exchange factor, through the cytoplasmic Toll/IL-1 receptor domain. Knockdown of endogenous Mcf2l and treatment with an inhibitor of Rho-associated protein kinase (ROCK), the downstream kinase of RhoA, suppressed IL1RAPL1-induced excitatory synapse formation of cortical neurons. Furthermore, we found that the expression of IL1RAPL1 affected the turnover of AMPA receptor subunits. Insertion of GluA1-containing AMPA receptors to the cell surface was decreased, whereas that of AMPA receptors composed of GluA2/3 was enhanced. Mcf2l knockdown and ROCK inhibitor treatment diminished the IL1RAPL1-induced changes of AMPA receptor subunit insertions. Our results suggest that Mcf2l-RhoA-ROCK signaling pathway mediates IL1RAPL1-dependent formation and stabilization of glutamatergic synapses of cortical neurons. Public Library of Science 2013-06-13 /pmc/articles/PMC3681934/ /pubmed/23785489 http://dx.doi.org/10.1371/journal.pone.0066254 Text en © 2013 Hayashi et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
repository_type Open Access Journal
institution_category Foreign Institution
institution US National Center for Biotechnology Information
building NCBI PubMed
collection Online Access
language English
format Online
author Hayashi, Takashi
Yoshida, Tomoyuki
Ra, Moonjin
Taguchi, Ryo
Mishina, Masayoshi
spellingShingle Hayashi, Takashi
Yoshida, Tomoyuki
Ra, Moonjin
Taguchi, Ryo
Mishina, Masayoshi
IL1RAPL1 Associated with Mental Retardation and Autism Regulates the Formation and Stabilization of Glutamatergic Synapses of Cortical Neurons through RhoA Signaling Pathway
author_facet Hayashi, Takashi
Yoshida, Tomoyuki
Ra, Moonjin
Taguchi, Ryo
Mishina, Masayoshi
author_sort Hayashi, Takashi
title IL1RAPL1 Associated with Mental Retardation and Autism Regulates the Formation and Stabilization of Glutamatergic Synapses of Cortical Neurons through RhoA Signaling Pathway
title_short IL1RAPL1 Associated with Mental Retardation and Autism Regulates the Formation and Stabilization of Glutamatergic Synapses of Cortical Neurons through RhoA Signaling Pathway
title_full IL1RAPL1 Associated with Mental Retardation and Autism Regulates the Formation and Stabilization of Glutamatergic Synapses of Cortical Neurons through RhoA Signaling Pathway
title_fullStr IL1RAPL1 Associated with Mental Retardation and Autism Regulates the Formation and Stabilization of Glutamatergic Synapses of Cortical Neurons through RhoA Signaling Pathway
title_full_unstemmed IL1RAPL1 Associated with Mental Retardation and Autism Regulates the Formation and Stabilization of Glutamatergic Synapses of Cortical Neurons through RhoA Signaling Pathway
title_sort il1rapl1 associated with mental retardation and autism regulates the formation and stabilization of glutamatergic synapses of cortical neurons through rhoa signaling pathway
description Interleukin-1 receptor accessory protein-like 1 (IL1RAPL1) is associated with X-linked mental retardation and autism spectrum disorder. We found that IL1RAPL1 regulates synapse formation of cortical neurons. To investigate how IL1RAPL1 controls synapse formation, we here screened IL1RAPL1-interacting proteins by affinity chromatography and mass spectroscopy. IL1RAPL1 interacted with Mcf2-like (Mcf2l), a Rho guanine nucleotide exchange factor, through the cytoplasmic Toll/IL-1 receptor domain. Knockdown of endogenous Mcf2l and treatment with an inhibitor of Rho-associated protein kinase (ROCK), the downstream kinase of RhoA, suppressed IL1RAPL1-induced excitatory synapse formation of cortical neurons. Furthermore, we found that the expression of IL1RAPL1 affected the turnover of AMPA receptor subunits. Insertion of GluA1-containing AMPA receptors to the cell surface was decreased, whereas that of AMPA receptors composed of GluA2/3 was enhanced. Mcf2l knockdown and ROCK inhibitor treatment diminished the IL1RAPL1-induced changes of AMPA receptor subunit insertions. Our results suggest that Mcf2l-RhoA-ROCK signaling pathway mediates IL1RAPL1-dependent formation and stabilization of glutamatergic synapses of cortical neurons.
publisher Public Library of Science
publishDate 2013
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3681934/
_version_ 1611986389393473536