IL1RAPL1 Associated with Mental Retardation and Autism Regulates the Formation and Stabilization of Glutamatergic Synapses of Cortical Neurons through RhoA Signaling Pathway
Interleukin-1 receptor accessory protein-like 1 (IL1RAPL1) is associated with X-linked mental retardation and autism spectrum disorder. We found that IL1RAPL1 regulates synapse formation of cortical neurons. To investigate how IL1RAPL1 controls synapse formation, we here screened IL1RAPL1-interactin...
Main Authors: | , , , , |
---|---|
Format: | Online |
Language: | English |
Published: |
Public Library of Science
2013
|
Online Access: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3681934/ |
id |
pubmed-3681934 |
---|---|
recordtype |
oai_dc |
spelling |
pubmed-36819342013-06-19 IL1RAPL1 Associated with Mental Retardation and Autism Regulates the Formation and Stabilization of Glutamatergic Synapses of Cortical Neurons through RhoA Signaling Pathway Hayashi, Takashi Yoshida, Tomoyuki Ra, Moonjin Taguchi, Ryo Mishina, Masayoshi Research Article Interleukin-1 receptor accessory protein-like 1 (IL1RAPL1) is associated with X-linked mental retardation and autism spectrum disorder. We found that IL1RAPL1 regulates synapse formation of cortical neurons. To investigate how IL1RAPL1 controls synapse formation, we here screened IL1RAPL1-interacting proteins by affinity chromatography and mass spectroscopy. IL1RAPL1 interacted with Mcf2-like (Mcf2l), a Rho guanine nucleotide exchange factor, through the cytoplasmic Toll/IL-1 receptor domain. Knockdown of endogenous Mcf2l and treatment with an inhibitor of Rho-associated protein kinase (ROCK), the downstream kinase of RhoA, suppressed IL1RAPL1-induced excitatory synapse formation of cortical neurons. Furthermore, we found that the expression of IL1RAPL1 affected the turnover of AMPA receptor subunits. Insertion of GluA1-containing AMPA receptors to the cell surface was decreased, whereas that of AMPA receptors composed of GluA2/3 was enhanced. Mcf2l knockdown and ROCK inhibitor treatment diminished the IL1RAPL1-induced changes of AMPA receptor subunit insertions. Our results suggest that Mcf2l-RhoA-ROCK signaling pathway mediates IL1RAPL1-dependent formation and stabilization of glutamatergic synapses of cortical neurons. Public Library of Science 2013-06-13 /pmc/articles/PMC3681934/ /pubmed/23785489 http://dx.doi.org/10.1371/journal.pone.0066254 Text en © 2013 Hayashi et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
repository_type |
Open Access Journal |
institution_category |
Foreign Institution |
institution |
US National Center for Biotechnology Information |
building |
NCBI PubMed |
collection |
Online Access |
language |
English |
format |
Online |
author |
Hayashi, Takashi Yoshida, Tomoyuki Ra, Moonjin Taguchi, Ryo Mishina, Masayoshi |
spellingShingle |
Hayashi, Takashi Yoshida, Tomoyuki Ra, Moonjin Taguchi, Ryo Mishina, Masayoshi IL1RAPL1 Associated with Mental Retardation and Autism Regulates the Formation and Stabilization of Glutamatergic Synapses of Cortical Neurons through RhoA Signaling Pathway |
author_facet |
Hayashi, Takashi Yoshida, Tomoyuki Ra, Moonjin Taguchi, Ryo Mishina, Masayoshi |
author_sort |
Hayashi, Takashi |
title |
IL1RAPL1 Associated with Mental Retardation and Autism Regulates the Formation and Stabilization of Glutamatergic Synapses of Cortical Neurons through RhoA Signaling Pathway |
title_short |
IL1RAPL1 Associated with Mental Retardation and Autism Regulates the Formation and Stabilization of Glutamatergic Synapses of Cortical Neurons through RhoA Signaling Pathway |
title_full |
IL1RAPL1 Associated with Mental Retardation and Autism Regulates the Formation and Stabilization of Glutamatergic Synapses of Cortical Neurons through RhoA Signaling Pathway |
title_fullStr |
IL1RAPL1 Associated with Mental Retardation and Autism Regulates the Formation and Stabilization of Glutamatergic Synapses of Cortical Neurons through RhoA Signaling Pathway |
title_full_unstemmed |
IL1RAPL1 Associated with Mental Retardation and Autism Regulates the Formation and Stabilization of Glutamatergic Synapses of Cortical Neurons through RhoA Signaling Pathway |
title_sort |
il1rapl1 associated with mental retardation and autism regulates the formation and stabilization of glutamatergic synapses of cortical neurons through rhoa signaling pathway |
description |
Interleukin-1 receptor accessory protein-like 1 (IL1RAPL1) is associated with X-linked mental retardation and autism spectrum disorder. We found that IL1RAPL1 regulates synapse formation of cortical neurons. To investigate how IL1RAPL1 controls synapse formation, we here screened IL1RAPL1-interacting proteins by affinity chromatography and mass spectroscopy. IL1RAPL1 interacted with Mcf2-like (Mcf2l), a Rho guanine nucleotide exchange factor, through the cytoplasmic Toll/IL-1 receptor domain. Knockdown of endogenous Mcf2l and treatment with an inhibitor of Rho-associated protein kinase (ROCK), the downstream kinase of RhoA, suppressed IL1RAPL1-induced excitatory synapse formation of cortical neurons. Furthermore, we found that the expression of IL1RAPL1 affected the turnover of AMPA receptor subunits. Insertion of GluA1-containing AMPA receptors to the cell surface was decreased, whereas that of AMPA receptors composed of GluA2/3 was enhanced. Mcf2l knockdown and ROCK inhibitor treatment diminished the IL1RAPL1-induced changes of AMPA receptor subunit insertions. Our results suggest that Mcf2l-RhoA-ROCK signaling pathway mediates IL1RAPL1-dependent formation and stabilization of glutamatergic synapses of cortical neurons. |
publisher |
Public Library of Science |
publishDate |
2013 |
url |
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3681934/ |
_version_ |
1611986389393473536 |