Ischemic Preconditioning Protects against Spinal Cord Ischemia-Reperfusion Injury in Rabbits by Attenuating Blood Spinal Cord Barrier Disruption
Ischemic preconditioning has been reported to protect against spinal cord ischemia-reperfusion (I-R) injury, but the underlying mechanisms are not fully understood. To investigate this, Japanese white rabbits underwent I-R (30 min aortic occlusion followed by reperfusion), ischemic preconditioning (...
Main Authors: | , , , , , , |
---|---|
Format: | Online |
Language: | English |
Published: |
Molecular Diversity Preservation International (MDPI)
2013
|
Online Access: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3676842/ |
id |
pubmed-3676842 |
---|---|
recordtype |
oai_dc |
spelling |
pubmed-36768422013-07-02 Ischemic Preconditioning Protects against Spinal Cord Ischemia-Reperfusion Injury in Rabbits by Attenuating Blood Spinal Cord Barrier Disruption Fang, Bo Li, Xiao-Man Sun, Xi-Jia Bao, Na-Ren Ren, Xiao-Yan Lv, Huang-Wei Ma, Hong Article Ischemic preconditioning has been reported to protect against spinal cord ischemia-reperfusion (I-R) injury, but the underlying mechanisms are not fully understood. To investigate this, Japanese white rabbits underwent I-R (30 min aortic occlusion followed by reperfusion), ischemic preconditioning (three cycles of 5 min aortic occlusion plus 5 min reperfusion) followed by I-R, or sham surgery. At 4 and 24 h following reperfusion, neurological function was assessed using Tarlov scores, blood spinal cord barrier permeability was measured by Evan’s Blue extravasation, spinal cord edema was evaluated using the wet-dry method, and spinal cord expression of zonula occluden-1 (ZO-1), matrix metalloproteinase-9 (MMP-9), and tumor necrosis factor-α (TNF-α) were measured by Western blot and a real-time polymerase chain reaction. ZO-1 was also assessed using immunofluorescence. Spinal cord I-R injury reduced neurologic scores, and ischemic preconditioning treatment ameliorated this effect. Ischemic preconditioning inhibited I-R-induced increases in blood spinal cord barrier permeability and water content, increased ZO-1 mRNA and protein expression, and reduced MMP-9 and TNF-α mRNA and protein expression. These findings suggest that ischemic preconditioning attenuates the increase in blood spinal cord barrier permeability due to spinal cord I-R injury by preservation of tight junction protein ZO-1 and reducing MMP-9 and TNF-α expression. Molecular Diversity Preservation International (MDPI) 2013-05-17 /pmc/articles/PMC3676842/ /pubmed/23685868 http://dx.doi.org/10.3390/ijms140510343 Text en © 2013 by the authors; licensee MDPI, Basel, Switzerland http://creativecommons.org/licenses/by/3.0 This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/). |
repository_type |
Open Access Journal |
institution_category |
Foreign Institution |
institution |
US National Center for Biotechnology Information |
building |
NCBI PubMed |
collection |
Online Access |
language |
English |
format |
Online |
author |
Fang, Bo Li, Xiao-Man Sun, Xi-Jia Bao, Na-Ren Ren, Xiao-Yan Lv, Huang-Wei Ma, Hong |
spellingShingle |
Fang, Bo Li, Xiao-Man Sun, Xi-Jia Bao, Na-Ren Ren, Xiao-Yan Lv, Huang-Wei Ma, Hong Ischemic Preconditioning Protects against Spinal Cord Ischemia-Reperfusion Injury in Rabbits by Attenuating Blood Spinal Cord Barrier Disruption |
author_facet |
Fang, Bo Li, Xiao-Man Sun, Xi-Jia Bao, Na-Ren Ren, Xiao-Yan Lv, Huang-Wei Ma, Hong |
author_sort |
Fang, Bo |
title |
Ischemic Preconditioning Protects against Spinal Cord Ischemia-Reperfusion Injury in Rabbits by Attenuating Blood Spinal Cord Barrier Disruption |
title_short |
Ischemic Preconditioning Protects against Spinal Cord Ischemia-Reperfusion Injury in Rabbits by Attenuating Blood Spinal Cord Barrier Disruption |
title_full |
Ischemic Preconditioning Protects against Spinal Cord Ischemia-Reperfusion Injury in Rabbits by Attenuating Blood Spinal Cord Barrier Disruption |
title_fullStr |
Ischemic Preconditioning Protects against Spinal Cord Ischemia-Reperfusion Injury in Rabbits by Attenuating Blood Spinal Cord Barrier Disruption |
title_full_unstemmed |
Ischemic Preconditioning Protects against Spinal Cord Ischemia-Reperfusion Injury in Rabbits by Attenuating Blood Spinal Cord Barrier Disruption |
title_sort |
ischemic preconditioning protects against spinal cord ischemia-reperfusion injury in rabbits by attenuating blood spinal cord barrier disruption |
description |
Ischemic preconditioning has been reported to protect against spinal cord ischemia-reperfusion (I-R) injury, but the underlying mechanisms are not fully understood. To investigate this, Japanese white rabbits underwent I-R (30 min aortic occlusion followed by reperfusion), ischemic preconditioning (three cycles of 5 min aortic occlusion plus 5 min reperfusion) followed by I-R, or sham surgery. At 4 and 24 h following reperfusion, neurological function was assessed using Tarlov scores, blood spinal cord barrier permeability was measured by Evan’s Blue extravasation, spinal cord edema was evaluated using the wet-dry method, and spinal cord expression of zonula occluden-1 (ZO-1), matrix metalloproteinase-9 (MMP-9), and tumor necrosis factor-α (TNF-α) were measured by Western blot and a real-time polymerase chain reaction. ZO-1 was also assessed using immunofluorescence. Spinal cord I-R injury reduced neurologic scores, and ischemic preconditioning treatment ameliorated this effect. Ischemic preconditioning inhibited I-R-induced increases in blood spinal cord barrier permeability and water content, increased ZO-1 mRNA and protein expression, and reduced MMP-9 and TNF-α mRNA and protein expression. These findings suggest that ischemic preconditioning attenuates the increase in blood spinal cord barrier permeability due to spinal cord I-R injury by preservation of tight junction protein ZO-1 and reducing MMP-9 and TNF-α expression. |
publisher |
Molecular Diversity Preservation International (MDPI) |
publishDate |
2013 |
url |
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3676842/ |
_version_ |
1611984830327685120 |