Vibration Analysis of Composite Laminate Plate Excited by Piezoelectric Actuators

Piezoelectric materials can be used as actuators for the active vibration control of smart structural systems. In this work, piezoelectric patches are surface bonded to a composite laminate plate and used as vibration actuators. A static analysis based on the piezoelectricity and elasticity is condu...

Full description

Bibliographic Details
Main Authors: Her, Shiuh-Chuan, Lin, Chi-Sheng
Format: Online
Language:English
Published: Molecular Diversity Preservation International (MDPI) 2013
Online Access:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3658727/
Description
Summary:Piezoelectric materials can be used as actuators for the active vibration control of smart structural systems. In this work, piezoelectric patches are surface bonded to a composite laminate plate and used as vibration actuators. A static analysis based on the piezoelectricity and elasticity is conducted to evaluate the loads induced by the piezoelectric actuators to the host structure. The loads are then employed to develop the vibration response of a simply supported laminate rectangular plate excited by piezoelectric patches subjected to time harmonic voltages. An analytical solution of the vibration response of a simply supported laminate rectangular plate under time harmonic electrical loading is obtained and compared with finite element results to validate the present approach. The effects of location and exciting frequency of piezoelectric actuators on the vibration response of the laminate plate are investigated through a parametric study. Numerical results show that modes can be selectively excited, leading to structural vibration control.