Aerodynamic drag of modern soccer balls

Soccer balls such as the Adidas Roteiro that have been used in soccer tournaments thus far had 32 pentagonal and hexagonal panels. Recently, the Adidas Teamgeist II and Adidas Jabulani, respectively having 14 and 8 panels, have been used at tournaments; the aerodynamic characteristics of these balls...

Full description

Bibliographic Details
Main Authors: Asai, Takeshi, Seo, Kazuya
Format: Online
Language:English
Published: Springer International Publishing AG 2013
Online Access:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3657093/
id pubmed-3657093
recordtype oai_dc
spelling pubmed-36570932013-05-21 Aerodynamic drag of modern soccer balls Asai, Takeshi Seo, Kazuya Research Soccer balls such as the Adidas Roteiro that have been used in soccer tournaments thus far had 32 pentagonal and hexagonal panels. Recently, the Adidas Teamgeist II and Adidas Jabulani, respectively having 14 and 8 panels, have been used at tournaments; the aerodynamic characteristics of these balls have not yet been verified. Now, the Adidas Tango 12, having 32 panels, has been developed for use at tournaments; therefore, it is necessary to understand its aerodynamic characteristics. Through a wind tunnel test and ball trajectory simulations, this study shows that the aerodynamic resistance of the new 32-panel soccer ball is larger in the high-speed region and lower in the middle-speed region than that of the previous 14- and 8-panel balls. The critical Reynolds number of the Roteiro, Teamgeist II, Jabulani, and Tango 12 was ~2.2 × 105 (drag coefficient, Cd ≈ 0.12), ~2.8 × 105 (Cd ≈ 0.13), ~3.3 × 105 (Cd ≈ 0.13), and ~2.4 × 105 (Cd ≈ 0.15), respectively. The flight trajectory simulation suggested that the Tango 12, one of the newest soccer balls, has less air resistance in the medium-speed region than the Jabulani and can thus easily acquire large initial velocity in this region. It is considered that the critical Reynolds number of a soccer ball, as considered within the scope of this experiment, depends on the extended total distance of the panel bonds rather than the small designs on the panel surfaces. Springer International Publishing AG 2013-04-19 /pmc/articles/PMC3657093/ /pubmed/23705104 http://dx.doi.org/10.1186/2193-1801-2-171 Text en © Asai and Seo; licensee Springer. 2013 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
repository_type Open Access Journal
institution_category Foreign Institution
institution US National Center for Biotechnology Information
building NCBI PubMed
collection Online Access
language English
format Online
author Asai, Takeshi
Seo, Kazuya
spellingShingle Asai, Takeshi
Seo, Kazuya
Aerodynamic drag of modern soccer balls
author_facet Asai, Takeshi
Seo, Kazuya
author_sort Asai, Takeshi
title Aerodynamic drag of modern soccer balls
title_short Aerodynamic drag of modern soccer balls
title_full Aerodynamic drag of modern soccer balls
title_fullStr Aerodynamic drag of modern soccer balls
title_full_unstemmed Aerodynamic drag of modern soccer balls
title_sort aerodynamic drag of modern soccer balls
description Soccer balls such as the Adidas Roteiro that have been used in soccer tournaments thus far had 32 pentagonal and hexagonal panels. Recently, the Adidas Teamgeist II and Adidas Jabulani, respectively having 14 and 8 panels, have been used at tournaments; the aerodynamic characteristics of these balls have not yet been verified. Now, the Adidas Tango 12, having 32 panels, has been developed for use at tournaments; therefore, it is necessary to understand its aerodynamic characteristics. Through a wind tunnel test and ball trajectory simulations, this study shows that the aerodynamic resistance of the new 32-panel soccer ball is larger in the high-speed region and lower in the middle-speed region than that of the previous 14- and 8-panel balls. The critical Reynolds number of the Roteiro, Teamgeist II, Jabulani, and Tango 12 was ~2.2 × 105 (drag coefficient, Cd ≈ 0.12), ~2.8 × 105 (Cd ≈ 0.13), ~3.3 × 105 (Cd ≈ 0.13), and ~2.4 × 105 (Cd ≈ 0.15), respectively. The flight trajectory simulation suggested that the Tango 12, one of the newest soccer balls, has less air resistance in the medium-speed region than the Jabulani and can thus easily acquire large initial velocity in this region. It is considered that the critical Reynolds number of a soccer ball, as considered within the scope of this experiment, depends on the extended total distance of the panel bonds rather than the small designs on the panel surfaces.
publisher Springer International Publishing AG
publishDate 2013
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3657093/
_version_ 1611978762705960960