An in vitro assay system for antihyperlipidemic agents by evaluating lipoprotein profiles from human intestinal epithelium-like cells

We developed an in vitro screening system for antihyperlipidemic activity by measuring lipoprotein profiles secreted from human intestinal epithelium-like cells from the colon cancer cell line, Caco-2. Sodium (Na) butyrate at 5 mM differentiated Caco-2 cells into intestinal epithelium-like cells and...

Full description

Bibliographic Details
Main Authors: Takahashi, Junichiro, Ogihara, Kikumi, Naya, Yuko, Kimura, Fumiko, Itoh, Mizuho, Iwama, Yuka, Matsumoto, Yukie, Toshima, Gen, Hata, Keishi
Format: Online
Language:English
Published: Springer Berlin Heidelberg 2012
Online Access:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3646105/
Description
Summary:We developed an in vitro screening system for antihyperlipidemic activity by measuring lipoprotein profiles secreted from human intestinal epithelium-like cells from the colon cancer cell line, Caco-2. Sodium (Na) butyrate at 5 mM differentiated Caco-2 cells into intestinal epithelium-like cells and numerous microvilli on the apical side of cells were observed under transmission electron microscopy. Real-time RT-PCR analysis revealed that Na butyrate stimulated expression levels of intestinal differentiation markers in Caco-2 cells in a dose-dependent manner and 5 mM Na butyrate up-regulated intestinal alkaline phosphatase, sucrase–isomaltase complex, and microsomal triglyceride transfer protein by 8.1-, 1.9-, and 2.1-fold that of non-treated cells, respectively. Lipoprotein secretions from differentiated Caco-2 cells were promoted by lysophosphatidyl choline and Na oleate, which are a stimulator of lipoprotein secretion and a substrate of triglycerides, respectively. We examined the effects of Pluronic L-81, a lipoprotein secretion inhibitor, on lipoprotein profiles of differentiated Caco-2 cells. Pluronic L-81 at 1.0 μg/ml inhibited TG contents in lipoprotein fractions from cells by 25.6 % and secretion was completely suppressed by the agent at 10 μg/ml.