A novel porcine acellular dermal matrix scaffold used in periodontal regeneration
Regeneration of periodontal tissue is the most promising method for restoring periodontal structures. To find a suitable bioactive three-dimensional scaffold promoting cell proliferation and differentiation is critical in periodontal tissue engineering. The objective of this study was to evaluate th...
Main Authors: | , , , , |
---|---|
Format: | Online |
Language: | English |
Published: |
Nature Publishing Group
2013
|
Online Access: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3632768/ |
id |
pubmed-3632768 |
---|---|
recordtype |
oai_dc |
spelling |
pubmed-36327682013-04-23 A novel porcine acellular dermal matrix scaffold used in periodontal regeneration Guo, Jing Chen, Hui Wang, Ying Cao, Cheng-Bo Guan, Guo-Qiang Original Article Regeneration of periodontal tissue is the most promising method for restoring periodontal structures. To find a suitable bioactive three-dimensional scaffold promoting cell proliferation and differentiation is critical in periodontal tissue engineering. The objective of this study was to evaluate the biocompatibility of a novel porcine acellular dermal matrix as periodontal tissue scaffolds both in vitro and in vivo. The scaffolds in this study were purified porcine acellular dermal matrix (PADM) and hydroxyapatite-treated PADM (HA-PADM). The biodegradation patterns of the scaffolds were evaluated in vitro. The biocompatibility of the scaffolds in vivo was assessed by implanting them into the sacrospinal muscle of 20 New Zealand white rabbits. The hPDL cells were cultured with PADM or HA-PADM scaffolds for 3, 7, 14, 21 and 28 days. Cell viability assay, scanning electron microscopy (SEM), hematoxylin and eosin (H&E) staining, immunohistochemistry and confocal microscopy were used to evaluate the biocompatibility of the scaffolds. In vitro, both PADM and HA-PADM scaffolds displayed appropriate biodegradation pattern, and also, demonstrated favorable tissue compatibility without tissue necrosis, fibrosis and other abnormal response. The absorbance readings of the WST-1 assay were increased with the time course, suggesting the cell proliferation in the scaffolds. The hPDL cells attaching, spreading and morphology on the surface of the scaffold were visualized by SEM, H&E staining, immnuohistochemistry and confocal microscopy, demonstrated that hPDL cells were able to grow into the HA-PADM scaffolds and the amount of cells were growing up in the course of time. This study proved that HA-PADM scaffold had good biocompatibility in animals in vivo and appropriate biodegrading characteristics in vitro. The hPDL cells were able to proliferate and migrate into the scaffold. These observations may suggest that HA-PADM scaffold is a potential cell carrier for periodontal tissue regeneration. Nature Publishing Group 2013-04 2013-03-15 /pmc/articles/PMC3632768/ /pubmed/23492902 http://dx.doi.org/10.1038/ijos.2013.1 Text en Copyright © 2013 West China School of Stomatology http://creativecommons.org/licenses/by-nc-nd/3.0/ This work is licensed under the Creative Commons Attribution-NonCommercial-No Derivative Works 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ |
repository_type |
Open Access Journal |
institution_category |
Foreign Institution |
institution |
US National Center for Biotechnology Information |
building |
NCBI PubMed |
collection |
Online Access |
language |
English |
format |
Online |
author |
Guo, Jing Chen, Hui Wang, Ying Cao, Cheng-Bo Guan, Guo-Qiang |
spellingShingle |
Guo, Jing Chen, Hui Wang, Ying Cao, Cheng-Bo Guan, Guo-Qiang A novel porcine acellular dermal matrix scaffold used in periodontal regeneration |
author_facet |
Guo, Jing Chen, Hui Wang, Ying Cao, Cheng-Bo Guan, Guo-Qiang |
author_sort |
Guo, Jing |
title |
A novel porcine acellular dermal matrix scaffold used in periodontal regeneration |
title_short |
A novel porcine acellular dermal matrix scaffold used in periodontal regeneration |
title_full |
A novel porcine acellular dermal matrix scaffold used in periodontal regeneration |
title_fullStr |
A novel porcine acellular dermal matrix scaffold used in periodontal regeneration |
title_full_unstemmed |
A novel porcine acellular dermal matrix scaffold used in periodontal regeneration |
title_sort |
novel porcine acellular dermal matrix scaffold used in periodontal regeneration |
description |
Regeneration of periodontal tissue is the most promising method for restoring periodontal structures. To find a suitable bioactive three-dimensional scaffold promoting cell proliferation and differentiation is critical in periodontal tissue engineering. The objective of this study was to evaluate the biocompatibility of a novel porcine acellular dermal matrix as periodontal tissue scaffolds both in vitro and in vivo. The scaffolds in this study were purified porcine acellular dermal matrix (PADM) and hydroxyapatite-treated PADM (HA-PADM). The biodegradation patterns of the scaffolds were evaluated in vitro. The biocompatibility of the scaffolds in vivo was assessed by implanting them into the sacrospinal muscle of 20 New Zealand white rabbits. The hPDL cells were cultured with PADM or HA-PADM scaffolds for 3, 7, 14, 21 and 28 days. Cell viability assay, scanning electron microscopy (SEM), hematoxylin and eosin (H&E) staining, immunohistochemistry and confocal microscopy were used to evaluate the biocompatibility of the scaffolds. In vitro, both PADM and HA-PADM scaffolds displayed appropriate biodegradation pattern, and also, demonstrated favorable tissue compatibility without tissue necrosis, fibrosis and other abnormal response. The absorbance readings of the WST-1 assay were increased with the time course, suggesting the cell proliferation in the scaffolds. The hPDL cells attaching, spreading and morphology on the surface of the scaffold were visualized by SEM, H&E staining, immnuohistochemistry and confocal microscopy, demonstrated that hPDL cells were able to grow into the HA-PADM scaffolds and the amount of cells were growing up in the course of time. This study proved that HA-PADM scaffold had good biocompatibility in animals in vivo and appropriate biodegrading characteristics in vitro. The hPDL cells were able to proliferate and migrate into the scaffold. These observations may suggest that HA-PADM scaffold is a potential cell carrier for periodontal tissue regeneration. |
publisher |
Nature Publishing Group |
publishDate |
2013 |
url |
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3632768/ |
_version_ |
1611971765039267840 |