Summary: | Primary cilia have recently been highlighted as key regulators in development and disease. This review focuses on current work demonstrating the broad role of cilia-related proteins in developmental signaling systems. Of particular consideration is the importance of the basal body region, located at the base of the cilium, in its role as a focal point for many signaling pathways and as a microtubule organizing center. As the cilium is effectively a microtubular extension of the cytoskeleton, investigating connections between the cilium and the cytoskeleton provides greater insight into signaling and cell function. Of the many signaling pathways associated with primary cilia, the most extensively studied in association with the cytoskeleton and cytoskeletal rearrangements are both canonical and non-canonical Wnt pathways. One of the key concepts currently emerging is a possible additional role for the traditionally 'cilia-related' proteins in other aspects of cellular processes. In many cases, disruption of such processes manifests at the level of the cilium. While the involvement of cilia and cilia-related proteins in signaling pathways is currently being unraveled, there is a growing body of evidence to support the notion that ciliary proteins are required not only for regulation of Wnt signaling, but also as downstream effectors of Wnt signaling. This review summarizes recent advances in our understanding of the involvement of cilia and basal body proteins in Wnt signaling pathways.
|