Noncanonical Reactions of Flavoenzymes
Enzymes containing flavin cofactors are predominantly involved in redox reactions in numerous cellular processes where the protein environment modulates the chemical reactivity of the flavin to either transfer one or two electrons. Some flavoenzymes catalyze reactions with no net redox change. In th...
Main Author: | |
---|---|
Format: | Online |
Language: | English |
Published: |
Molecular Diversity Preservation International (MDPI)
2012
|
Online Access: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3509576/ |
id |
pubmed-3509576 |
---|---|
recordtype |
oai_dc |
spelling |
pubmed-35095762013-01-09 Noncanonical Reactions of Flavoenzymes Sobrado, Pablo Review Enzymes containing flavin cofactors are predominantly involved in redox reactions in numerous cellular processes where the protein environment modulates the chemical reactivity of the flavin to either transfer one or two electrons. Some flavoenzymes catalyze reactions with no net redox change. In these reactions, the protein environment modulates the reactivity of the flavin to perform novel chemistries. Recent mechanistic and structural data supporting novel flavin functionalities in reactions catalyzed by chorismate synthase, type II isopentenyl diphosphate isomerase, UDP-galactopyranose mutase, and alkyl-dihydroxyacetonephosphate synthase are presented in this review. In these enzymes, the flavin plays either a direct role in acid/base reactions or as a nucleophile or electrophile. In addition, the flavin cofactor is proposed to function as a “molecular scaffold” in the formation of UDP-galactofuranose and alkyl-dihydroxyacetonephosphate by forming a covalent adduct with reaction intermediates. Molecular Diversity Preservation International (MDPI) 2012-11-05 /pmc/articles/PMC3509576/ /pubmed/23203060 http://dx.doi.org/10.3390/ijms131114219 Text en © 2012 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. http://creativecommons.org/licenses/by/3.0 This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0). |
repository_type |
Open Access Journal |
institution_category |
Foreign Institution |
institution |
US National Center for Biotechnology Information |
building |
NCBI PubMed |
collection |
Online Access |
language |
English |
format |
Online |
author |
Sobrado, Pablo |
spellingShingle |
Sobrado, Pablo Noncanonical Reactions of Flavoenzymes |
author_facet |
Sobrado, Pablo |
author_sort |
Sobrado, Pablo |
title |
Noncanonical Reactions of Flavoenzymes |
title_short |
Noncanonical Reactions of Flavoenzymes |
title_full |
Noncanonical Reactions of Flavoenzymes |
title_fullStr |
Noncanonical Reactions of Flavoenzymes |
title_full_unstemmed |
Noncanonical Reactions of Flavoenzymes |
title_sort |
noncanonical reactions of flavoenzymes |
description |
Enzymes containing flavin cofactors are predominantly involved in redox reactions in numerous cellular processes where the protein environment modulates the chemical reactivity of the flavin to either transfer one or two electrons. Some flavoenzymes catalyze reactions with no net redox change. In these reactions, the protein environment modulates the reactivity of the flavin to perform novel chemistries. Recent mechanistic and structural data supporting novel flavin functionalities in reactions catalyzed by chorismate synthase, type II isopentenyl diphosphate isomerase, UDP-galactopyranose mutase, and alkyl-dihydroxyacetonephosphate synthase are presented in this review. In these enzymes, the flavin plays either a direct role in acid/base reactions or as a nucleophile or electrophile. In addition, the flavin cofactor is proposed to function as a “molecular scaffold” in the formation of UDP-galactofuranose and alkyl-dihydroxyacetonephosphate by forming a covalent adduct with reaction intermediates. |
publisher |
Molecular Diversity Preservation International (MDPI) |
publishDate |
2012 |
url |
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3509576/ |
_version_ |
1611936428582764544 |