Summary: | Correlations in spike-train ensembles can seriously impair the encoding of
information by their spatio-temporal structure. An inevitable source of
correlation in finite neural networks is common presynaptic input to pairs of
neurons. Recent studies demonstrate that spike correlations in recurrent neural
networks are considerably smaller than expected based on the amount of shared
presynaptic input. Here, we explain this observation by means of a linear
network model and simulations of networks of leaky integrate-and-fire neurons.
We show that inhibitory feedback efficiently suppresses pairwise correlations
and, hence, population-rate fluctuations, thereby assigning inhibitory neurons
the new role of active decorrelation. We quantify this decorrelation by
comparing the responses of the intact recurrent network (feedback system) and
systems where the statistics of the feedback channel is perturbed (feedforward
system). Manipulations of the feedback statistics can lead to a significant
increase in the power and coherence of the population response. In particular,
neglecting correlations within the ensemble of feedback channels or between the
external stimulus and the feedback amplifies population-rate fluctuations by
orders of magnitude. The fluctuation suppression in homogeneous inhibitory
networks is explained by a negative feedback loop in the one-dimensional
dynamics of the compound activity. Similarly, a change of coordinates exposes an
effective negative feedback loop in the compound dynamics of stable
excitatory-inhibitory networks. The suppression of input correlations in finite
networks is explained by the population averaged correlations in the linear
network model: In purely inhibitory networks, shared-input correlations are
canceled by negative spike-train correlations. In excitatory-inhibitory
networks, spike-train correlations are typically positive. Here, the suppression
of input correlations is not a result of the mere existence of correlations
between excitatory (E) and inhibitory (I) neurons, but a consequence of a
particular structure of correlations among the three possible pairings (EE, EI,
II).
|