High Glucose Inhibits the Aspirin-Induced Activation of the Nitric Oxide/cGMP/cGMP-Dependent Protein Kinase Pathway and Does Not Affect the Aspirin-Induced Inhibition of Thromboxane Synthesis in Human Platelets

Since hyperglycemia is involved in the “aspirin resistance” occurring in diabetes, we aimed at evaluating whether high glucose interferes with the aspirin-induced inhibition of thromboxane synthesis and/or activation of the nitric oxide (NO)/cGMP/cGMP-dependent protein kinase (PKG) pathway in platel...

Full description

Bibliographic Details
Main Authors: Russo, Isabella, Viretto, Michela, Barale, Cristina, Mattiello, Luigi, Doronzo, Gabriella, Pagliarino, Andrea, Cavalot, Franco, Trovati, Mariella, Anfossi, Giovanni
Format: Online
Language:English
Published: American Diabetes Association 2012
Online Access:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3478557/
id pubmed-3478557
recordtype oai_dc
spelling pubmed-34785572013-11-01 High Glucose Inhibits the Aspirin-Induced Activation of the Nitric Oxide/cGMP/cGMP-Dependent Protein Kinase Pathway and Does Not Affect the Aspirin-Induced Inhibition of Thromboxane Synthesis in Human Platelets Russo, Isabella Viretto, Michela Barale, Cristina Mattiello, Luigi Doronzo, Gabriella Pagliarino, Andrea Cavalot, Franco Trovati, Mariella Anfossi, Giovanni Pathophysiology Since hyperglycemia is involved in the “aspirin resistance” occurring in diabetes, we aimed at evaluating whether high glucose interferes with the aspirin-induced inhibition of thromboxane synthesis and/or activation of the nitric oxide (NO)/cGMP/cGMP-dependent protein kinase (PKG) pathway in platelets. For this purpose, in platelets from 60 healthy volunteers incubated for 60 min with 5–25 mmol/L d-glucose or iso-osmolar mannitol, we evaluated the influence of a 30-min incubation with lysine acetylsalicylate (L-ASA; 1–300 μmol/L) on 1) platelet function under shear stress; 2) aggregation induced by sodium arachidonate or ADP; 3) agonist-induced thromboxane production; and 4) NO production, cGMP synthesis, and PKG-induced vasodilator-stimulated phosphoprotein phosphorylation. Experiments were repeated in the presence of the antioxidant agent amifostine. We observed that platelet exposure to 25 mmol/L d-glucose, but not to iso-osmolar mannitol, 1) reduced the ability of L-ASA to inhibit platelet responses to agonists; 2) did not modify the L-ASA–induced inhibition of thromboxane synthesis; and 3) prevented the L-ASA–induced activation of the NO/cGMP/PKG pathway. Preincubation with amifostine reversed the high-glucose effects. Thus, high glucose acutely reduces the antiaggregating effect of aspirin, does not modify the aspirin-induced inhibition of thromboxane synthesis, and inhibits the aspirin-induced activation of the NO/cGMP/PKG pathway. These results identify a mechanism by which high glucose interferes with the aspirin action. American Diabetes Association 2012-11 2012-10-16 /pmc/articles/PMC3478557/ /pubmed/22837307 http://dx.doi.org/10.2337/db12-0040 Text en © 2012 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details.
repository_type Open Access Journal
institution_category Foreign Institution
institution US National Center for Biotechnology Information
building NCBI PubMed
collection Online Access
language English
format Online
author Russo, Isabella
Viretto, Michela
Barale, Cristina
Mattiello, Luigi
Doronzo, Gabriella
Pagliarino, Andrea
Cavalot, Franco
Trovati, Mariella
Anfossi, Giovanni
spellingShingle Russo, Isabella
Viretto, Michela
Barale, Cristina
Mattiello, Luigi
Doronzo, Gabriella
Pagliarino, Andrea
Cavalot, Franco
Trovati, Mariella
Anfossi, Giovanni
High Glucose Inhibits the Aspirin-Induced Activation of the Nitric Oxide/cGMP/cGMP-Dependent Protein Kinase Pathway and Does Not Affect the Aspirin-Induced Inhibition of Thromboxane Synthesis in Human Platelets
author_facet Russo, Isabella
Viretto, Michela
Barale, Cristina
Mattiello, Luigi
Doronzo, Gabriella
Pagliarino, Andrea
Cavalot, Franco
Trovati, Mariella
Anfossi, Giovanni
author_sort Russo, Isabella
title High Glucose Inhibits the Aspirin-Induced Activation of the Nitric Oxide/cGMP/cGMP-Dependent Protein Kinase Pathway and Does Not Affect the Aspirin-Induced Inhibition of Thromboxane Synthesis in Human Platelets
title_short High Glucose Inhibits the Aspirin-Induced Activation of the Nitric Oxide/cGMP/cGMP-Dependent Protein Kinase Pathway and Does Not Affect the Aspirin-Induced Inhibition of Thromboxane Synthesis in Human Platelets
title_full High Glucose Inhibits the Aspirin-Induced Activation of the Nitric Oxide/cGMP/cGMP-Dependent Protein Kinase Pathway and Does Not Affect the Aspirin-Induced Inhibition of Thromboxane Synthesis in Human Platelets
title_fullStr High Glucose Inhibits the Aspirin-Induced Activation of the Nitric Oxide/cGMP/cGMP-Dependent Protein Kinase Pathway and Does Not Affect the Aspirin-Induced Inhibition of Thromboxane Synthesis in Human Platelets
title_full_unstemmed High Glucose Inhibits the Aspirin-Induced Activation of the Nitric Oxide/cGMP/cGMP-Dependent Protein Kinase Pathway and Does Not Affect the Aspirin-Induced Inhibition of Thromboxane Synthesis in Human Platelets
title_sort high glucose inhibits the aspirin-induced activation of the nitric oxide/cgmp/cgmp-dependent protein kinase pathway and does not affect the aspirin-induced inhibition of thromboxane synthesis in human platelets
description Since hyperglycemia is involved in the “aspirin resistance” occurring in diabetes, we aimed at evaluating whether high glucose interferes with the aspirin-induced inhibition of thromboxane synthesis and/or activation of the nitric oxide (NO)/cGMP/cGMP-dependent protein kinase (PKG) pathway in platelets. For this purpose, in platelets from 60 healthy volunteers incubated for 60 min with 5–25 mmol/L d-glucose or iso-osmolar mannitol, we evaluated the influence of a 30-min incubation with lysine acetylsalicylate (L-ASA; 1–300 μmol/L) on 1) platelet function under shear stress; 2) aggregation induced by sodium arachidonate or ADP; 3) agonist-induced thromboxane production; and 4) NO production, cGMP synthesis, and PKG-induced vasodilator-stimulated phosphoprotein phosphorylation. Experiments were repeated in the presence of the antioxidant agent amifostine. We observed that platelet exposure to 25 mmol/L d-glucose, but not to iso-osmolar mannitol, 1) reduced the ability of L-ASA to inhibit platelet responses to agonists; 2) did not modify the L-ASA–induced inhibition of thromboxane synthesis; and 3) prevented the L-ASA–induced activation of the NO/cGMP/PKG pathway. Preincubation with amifostine reversed the high-glucose effects. Thus, high glucose acutely reduces the antiaggregating effect of aspirin, does not modify the aspirin-induced inhibition of thromboxane synthesis, and inhibits the aspirin-induced activation of the NO/cGMP/PKG pathway. These results identify a mechanism by which high glucose interferes with the aspirin action.
publisher American Diabetes Association
publishDate 2012
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3478557/
_version_ 1611918078492278784