A Featured-Based Strategy for Stereovision Matching in Sensors with Fish-Eye Lenses for Forest Environments
This paper describes a novel feature-based stereovision matching process based on a pair of omnidirectional images in forest stands acquired with a stereovision sensor equipped with fish-eye lenses. The stereo analysis problem consists of the following steps: image acquisition, camera modelling, fea...
Main Authors: | , , , , , |
---|---|
Format: | Online |
Language: | English |
Published: |
Molecular Diversity Preservation International (MDPI)
2009
|
Online Access: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3267182/ |
id |
pubmed-3267182 |
---|---|
recordtype |
oai_dc |
spelling |
pubmed-32671822012-02-02 A Featured-Based Strategy for Stereovision Matching in Sensors with Fish-Eye Lenses for Forest Environments Herrera, Pedro Javier Pajares, Gonzalo Guijarro, Maria Ruz, José J. Cruz, Jesús M. Montes, Fernando Article This paper describes a novel feature-based stereovision matching process based on a pair of omnidirectional images in forest stands acquired with a stereovision sensor equipped with fish-eye lenses. The stereo analysis problem consists of the following steps: image acquisition, camera modelling, feature extraction, image matching and depth determination. Once the depths of significant points on the trees are obtained, the growing stock volume can be estimated by considering the geometrical camera modelling, which is the final goal. The key steps are feature extraction and image matching. This paper is devoted solely to these two steps. At a first stage a segmentation process extracts the trunks, which are the regions used as features, where each feature is identified through a set of attributes of properties useful for matching. In the second step the features are matched based on the application of the following four well known matching constraints, epipolar, similarity, ordering and uniqueness. The combination of the segmentation and matching processes for this specific kind of sensors make the main contribution of the paper. The method is tested with satisfactory results and compared against the human expert criterion. Molecular Diversity Preservation International (MDPI) 2009-11-26 /pmc/articles/PMC3267182/ /pubmed/22303134 http://dx.doi.org/10.3390/s91209468 Text en © 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/). |
repository_type |
Open Access Journal |
institution_category |
Foreign Institution |
institution |
US National Center for Biotechnology Information |
building |
NCBI PubMed |
collection |
Online Access |
language |
English |
format |
Online |
author |
Herrera, Pedro Javier Pajares, Gonzalo Guijarro, Maria Ruz, José J. Cruz, Jesús M. Montes, Fernando |
spellingShingle |
Herrera, Pedro Javier Pajares, Gonzalo Guijarro, Maria Ruz, José J. Cruz, Jesús M. Montes, Fernando A Featured-Based Strategy for Stereovision Matching in Sensors with Fish-Eye Lenses for Forest Environments |
author_facet |
Herrera, Pedro Javier Pajares, Gonzalo Guijarro, Maria Ruz, José J. Cruz, Jesús M. Montes, Fernando |
author_sort |
Herrera, Pedro Javier |
title |
A Featured-Based Strategy for Stereovision Matching in Sensors with Fish-Eye Lenses for Forest Environments |
title_short |
A Featured-Based Strategy for Stereovision Matching in Sensors with Fish-Eye Lenses for Forest Environments |
title_full |
A Featured-Based Strategy for Stereovision Matching in Sensors with Fish-Eye Lenses for Forest Environments |
title_fullStr |
A Featured-Based Strategy for Stereovision Matching in Sensors with Fish-Eye Lenses for Forest Environments |
title_full_unstemmed |
A Featured-Based Strategy for Stereovision Matching in Sensors with Fish-Eye Lenses for Forest Environments |
title_sort |
featured-based strategy for stereovision matching in sensors with fish-eye lenses for forest environments |
description |
This paper describes a novel feature-based stereovision matching process based on a pair of omnidirectional images in forest stands acquired with a stereovision sensor equipped with fish-eye lenses. The stereo analysis problem consists of the following steps: image acquisition, camera modelling, feature extraction, image matching and depth determination. Once the depths of significant points on the trees are obtained, the growing stock volume can be estimated by considering the geometrical camera modelling, which is the final goal. The key steps are feature extraction and image matching. This paper is devoted solely to these two steps. At a first stage a segmentation process extracts the trunks, which are the regions used as features, where each feature is identified through a set of attributes of properties useful for matching. In the second step the features are matched based on the application of the following four well known matching constraints, epipolar, similarity, ordering and uniqueness. The combination of the segmentation and matching processes for this specific kind of sensors make the main contribution of the paper. The method is tested with satisfactory results and compared against the human expert criterion. |
publisher |
Molecular Diversity Preservation International (MDPI) |
publishDate |
2009 |
url |
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3267182/ |
_version_ |
1611502447316959232 |