Detection of Pelvic Inflammatory Disease: Development of an Automated Case-Finding Algorithm Using Administrative Data
ICD-9 codes are conventionally used to identify pelvic inflammatory disease (PID) from administrative data for surveillance purposes. This approach may include non-PID cases. To refine PID case identification among women with ICD-9 codes suggestive of PID, a case-finding algorithm was developed usin...
Main Authors: | , , , , , , , |
---|---|
Format: | Online |
Language: | English |
Published: |
Hindawi Publishing Corporation
2011
|
Online Access: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3226320/ |
Summary: | ICD-9 codes are conventionally used to identify pelvic inflammatory disease (PID) from administrative data for surveillance purposes. This approach may include non-PID cases. To refine PID case identification among women with ICD-9 codes suggestive of PID, a case-finding algorithm was developed using additional variables. Potential PID cases were identified among women aged 15–44 years at Group Health (GH) and Kaiser Permanente Colorado (KPCO) and verified by medical record review. A classification and regression tree analysis was used to develop the algorithm at GH; validation occurred at KPCO. The positive predictive value (PPV) for using ICD-9 codes alone to identify clinical PID cases was 79%. The algorithm identified PID appropriate treatment and age 15–25 years as predictors. Algorithm sensitivity (GH = 96.4%; KPCO = 90.3%) and PPV (GH = 86.9%; KPCO = 84.5%) were high, but specificity was poor (GH = 45.9%; KPCO = 37.0%). In GH, the algorithm offered a practical alternative to medical record review to further improve PID case identification. |
---|