Protective Effects of Emodin and Chrysophanol Isolated from Marine Fungus Aspergillus sp. on Ethanol-Induced Toxicity in HepG2/CYP2E1 Cells

Alcohol-induced liver injury progresses from fatty infiltration followed by a harmful cause of inflammation leading to an irreversible damage. In this study, two compounds (emodin and chrysophanol) isolated from marine fungus Aspergillus sp. were examined for their protective effects against ethanol...

Full description

Bibliographic Details
Main Authors: Qian, Zhong-Ji, Zhang, Chen, Li, Yong-Xin, Je, Jae-Young, Kim, Se-Kwon, Jung, Won-Kyo
Format: Online
Language:English
Published: Hindawi Publishing Corporation 2011
Online Access:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3168298/
Description
Summary:Alcohol-induced liver injury progresses from fatty infiltration followed by a harmful cause of inflammation leading to an irreversible damage. In this study, two compounds (emodin and chrysophanol) isolated from marine fungus Aspergillus sp. were examined for their protective effects against ethanol-induced toxicity in vitro. Ethanol-induced HepG2/CYP2E1 cells were treated with the compounds at various concentrations, and the results showed that there was a dose-dependent decrease of gamma-glutamyl transpeptidase (GGT) activity and increase of glutathione (GSH) in the culture media with an increase in cell viability. Furthermore, the protective effects of the compounds were evaluated by protein expression levels of GGT, GSH, and CYP2E1 using Western blot. Among the compounds, emodin addressed to the ethanol-induced cytotoxicity more effectively compared to the chrysophanol. It could be suggested that emodin isolated from this genus would be a potential candidate for attenuating ethanol induced liver damage for further industrial applications such as functional food and pharmaceutical developments.