A Minimum of Three Motifs Is Essential for Optimal Binding of Pseudomurein Cell Wall-Binding Domain of Methanothermobacter thermautotrophicus
We have biochemically and functionally characterized the pseudomurein cell wall-binding (PMB) domain that is present at the C-terminus of the Surface (S)-layer protein MTH719 from Methanothermobacter thermautotrophicus. Chemical denaturation of the protein with guanidinium hydrochloride occurred at...
Main Authors: | , , |
---|---|
Format: | Online |
Language: | English |
Published: |
Public Library of Science
2011
|
Online Access: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3124540/ |
Summary: | We have biochemically and functionally characterized the pseudomurein cell wall-binding (PMB) domain that is present at the C-terminus of the Surface (S)-layer protein MTH719 from Methanothermobacter thermautotrophicus. Chemical denaturation of the protein with guanidinium hydrochloride occurred at 3.8 M. A PMB-GFP fusion protein not only binds to intact pseudomurein of methanogenic archaea, but also to spheroplasts of lysozyme-treated bacterial cells. This binding is pH dependent. At least two of the three motifs that are present in the domain are necessary for binding. Limited proteolysis revealed a possible cleavage site in the spacing sequence between motifs 1 and 2 of the PMB domain, indicating that the motif region itself is protected from proteases. |
---|