id |
pubmed-2290964
|
recordtype |
oai_dc
|
spelling |
pubmed-22909642008-05-01 Microtubule dynamics in fish melanophores Articles We have studied the dynamics of microtubules in black tetra (Gymnocorymbus ternetzi) melanophores to test the possible correlation of microtubule stability and intracellular particle transport. X- rhodamine-or caged fluorescein-conjugated tubulin were microinjected and visualized by fluorescence digital imaging using a cooled charge coupled device and videomicroscopy. Microtubule dynamics were evaluated by determining the time course of tubulin incorporation after pulse injection, by time lapse observation, and by quantitation of fluorescence redistribution after photobleaching and photoactivation. The time course experiments showed that the kinetics of incorporation of labeled tubulin into microtubules were similar for cells with aggregated or dispersed pigment with most microtubules becoming fully labeled within 15-20 min after injection. Quantitation by fluorescence redistribution after photobleaching and photoactivation confirmed that microtubule turnover was rapid in both states, t1/2 = 3.5 +/- 1.5 and 6.1 +/- 3.0 min for cells with aggregated and dispersed pigment, respectively. In addition, immunostaining with antibodies specific to posttranslationally modified alpha-tubulin, which is usually enriched in stable microtubules, showed that microtubules composed exclusively of detyrosinated tubulin were absent and microtubules containing acetylated tubulin were sparse. We conclude that the microtubules of melanophores are very dynamic, that their dynamic properties do not depend critically on the state of pigment distribution, and that their stabilization is not a prerequisite for intracellular transport. The Rockefeller University Press 1994-09-02 /pmc/articles/PMC2290964/ /pubmed/8089178 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
|
repository_type |
Open Access Journal
|
institution_category |
Foreign Institution
|
institution |
US National Center for Biotechnology Information
|
building |
NCBI PubMed
|
collection |
Online Access
|
language |
English
|
format |
Online
|
title |
Microtubule dynamics in fish melanophores
|
spellingShingle |
Microtubule dynamics in fish melanophores
|
title_short |
Microtubule dynamics in fish melanophores
|
title_full |
Microtubule dynamics in fish melanophores
|
title_fullStr |
Microtubule dynamics in fish melanophores
|
title_full_unstemmed |
Microtubule dynamics in fish melanophores
|
title_sort |
microtubule dynamics in fish melanophores
|
description |
We have studied the dynamics of microtubules in black tetra (Gymnocorymbus ternetzi) melanophores to test the possible correlation of microtubule stability and intracellular particle transport. X- rhodamine-or caged fluorescein-conjugated tubulin were microinjected and visualized by fluorescence digital imaging using a cooled charge coupled device and videomicroscopy. Microtubule dynamics were evaluated by determining the time course of tubulin incorporation after pulse injection, by time lapse observation, and by quantitation of fluorescence redistribution after photobleaching and photoactivation. The time course experiments showed that the kinetics of incorporation of labeled tubulin into microtubules were similar for cells with aggregated or dispersed pigment with most microtubules becoming fully labeled within 15-20 min after injection. Quantitation by fluorescence redistribution after photobleaching and photoactivation confirmed that microtubule turnover was rapid in both states, t1/2 = 3.5 +/- 1.5 and 6.1 +/- 3.0 min for cells with aggregated and dispersed pigment, respectively. In addition, immunostaining with antibodies specific to posttranslationally modified alpha-tubulin, which is usually enriched in stable microtubules, showed that microtubules composed exclusively of detyrosinated tubulin were absent and microtubules containing acetylated tubulin were sparse. We conclude that the microtubules of melanophores are very dynamic, that their dynamic properties do not depend critically on the state of pigment distribution, and that their stabilization is not a prerequisite for intracellular transport.
|
publisher |
The Rockefeller University Press
|
publishDate |
1994
|
url |
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2290964/
|
_version_ |
1611440394345644032
|