Single-Channel Properties of Recombinant Acid-Sensitive Ion Channels Formed by the Subunits Asic2 and Asic3 from Dorsal Root Ganglion Neurons Expressed in Xenopus Oocytes
The acid-sensitive ion channels known as ASIC are gated by external protons. A set of these channels is expressed in dorsal root ganglion neurons where they may participate in the transduction of mechanical and nociceptive stimuli. Here, we have examined the single-channel properties of channels for...
Main Authors: | , |
---|---|
Format: | Online |
Language: | English |
Published: |
The Rockefeller University Press
2001
|
Online Access: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2232399/ |
id |
pubmed-2232399 |
---|---|
recordtype |
oai_dc |
spelling |
pubmed-22323992008-04-21 Single-Channel Properties of Recombinant Acid-Sensitive Ion Channels Formed by the Subunits Asic2 and Asic3 from Dorsal Root Ganglion Neurons Expressed in Xenopus Oocytes Zhang, Ping Canessa, Cecilia M. Original Article The acid-sensitive ion channels known as ASIC are gated by external protons. A set of these channels is expressed in dorsal root ganglion neurons where they may participate in the transduction of mechanical and nociceptive stimuli. Here, we have examined the single-channel properties of channels formed by the subunits ASIC2 and ASIC3 expressed in Xenopus oocytes using outside-out patches. The mean single-channel current-voltage relationship is linear with a slope conductance of 18 pS between −80 and −40 mV in 150 mM Na+ outside and 150 mM K+ inside the patch pipet. The selectivity for monovalent cations has the sequence Na+ > Li+ > K+. Divalent cations such as Ca2+ do not permeate, but instead block the channel when applied to the extracellular side. External protons increase the probability of channels being open to a maximum of 0.8 with an EC50 of 16 ± 4 μM and a Hill coefficient of 2.7 ± 0.3, whereas the mean single-channel current amplitude is independent of external pH. Analysis of the kinetics of single channels indicates the presence of at least four modes of activity (Mod1 to Mod4) in addition to an inactivated state. Three of the modes exhibit distinct kinetics, and can be unambiguously identified on the basis of open probability (PoMod1 = 0.5 ± 0.05; PoMod2 > 0.9 ± 0.05; PoMod3 < 0.1). Mode 4, which has a Po in the range of 0.5–0.8, may constitute a distinct mode or alternatively, it represents transitions between the other three modes of activity. Increasing [H+]o increases the frequency of entering the modes with high Po (modes 1, 2, and 4) and the time the channel spends in the modes with high activity. The Rockefeller University Press 2001-06-01 /pmc/articles/PMC2232399/ /pubmed/11382806 Text en © 2001 The Rockefeller University Press This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
repository_type |
Open Access Journal |
institution_category |
Foreign Institution |
institution |
US National Center for Biotechnology Information |
building |
NCBI PubMed |
collection |
Online Access |
language |
English |
format |
Online |
author |
Zhang, Ping Canessa, Cecilia M. |
spellingShingle |
Zhang, Ping Canessa, Cecilia M. Single-Channel Properties of Recombinant Acid-Sensitive Ion Channels Formed by the Subunits Asic2 and Asic3 from Dorsal Root Ganglion Neurons Expressed in Xenopus Oocytes |
author_facet |
Zhang, Ping Canessa, Cecilia M. |
author_sort |
Zhang, Ping |
title |
Single-Channel Properties of Recombinant Acid-Sensitive Ion Channels Formed by the Subunits Asic2 and Asic3 from Dorsal Root Ganglion Neurons Expressed in Xenopus Oocytes |
title_short |
Single-Channel Properties of Recombinant Acid-Sensitive Ion Channels Formed by the Subunits Asic2 and Asic3 from Dorsal Root Ganglion Neurons Expressed in Xenopus Oocytes |
title_full |
Single-Channel Properties of Recombinant Acid-Sensitive Ion Channels Formed by the Subunits Asic2 and Asic3 from Dorsal Root Ganglion Neurons Expressed in Xenopus Oocytes |
title_fullStr |
Single-Channel Properties of Recombinant Acid-Sensitive Ion Channels Formed by the Subunits Asic2 and Asic3 from Dorsal Root Ganglion Neurons Expressed in Xenopus Oocytes |
title_full_unstemmed |
Single-Channel Properties of Recombinant Acid-Sensitive Ion Channels Formed by the Subunits Asic2 and Asic3 from Dorsal Root Ganglion Neurons Expressed in Xenopus Oocytes |
title_sort |
single-channel properties of recombinant acid-sensitive ion channels formed by the subunits asic2 and asic3 from dorsal root ganglion neurons expressed in xenopus oocytes |
description |
The acid-sensitive ion channels known as ASIC are gated by external protons. A set of these channels is expressed in dorsal root ganglion neurons where they may participate in the transduction of mechanical and nociceptive stimuli. Here, we have examined the single-channel properties of channels formed by the subunits ASIC2 and ASIC3 expressed in Xenopus oocytes using outside-out patches. The mean single-channel current-voltage relationship is linear with a slope conductance of 18 pS between −80 and −40 mV in 150 mM Na+ outside and 150 mM K+ inside the patch pipet. The selectivity for monovalent cations has the sequence Na+ > Li+ > K+. Divalent cations such as Ca2+ do not permeate, but instead block the channel when applied to the extracellular side. External protons increase the probability of channels being open to a maximum of 0.8 with an EC50 of 16 ± 4 μM and a Hill coefficient of 2.7 ± 0.3, whereas the mean single-channel current amplitude is independent of external pH. Analysis of the kinetics of single channels indicates the presence of at least four modes of activity (Mod1 to Mod4) in addition to an inactivated state. Three of the modes exhibit distinct kinetics, and can be unambiguously identified on the basis of open probability (PoMod1 = 0.5 ± 0.05; PoMod2 > 0.9 ± 0.05; PoMod3 < 0.1). Mode 4, which has a Po in the range of 0.5–0.8, may constitute a distinct mode or alternatively, it represents transitions between the other three modes of activity. Increasing [H+]o increases the frequency of entering the modes with high Po (modes 1, 2, and 4) and the time the channel spends in the modes with high activity. |
publisher |
The Rockefeller University Press |
publishDate |
2001 |
url |
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2232399/ |
_version_ |
1611438212478140416 |