The Transcription Factor Interferon Regulatory Factor 1 (IRF-1) Is Important during the Maturation of Natural Killer 1.1+ T Cell Receptor–α/β+ (NK1+ T) Cells, Natural Killer Cells, and Intestinal Intraepithelial T Cells

In contrast to conventional T cells, natural killer (NK) 1.1+ T cell receptor (TCR)-α/β+ (NK1+T) cells, NK cells, and intestinal intraepithelial lymphocytes (IELs) bearing CD8-α/α chains constitutively express the interleukin (IL)-2 receptor (R)β/15Rβ chain. Recent studies have indicated that IL-2Rβ...

Full description

Bibliographic Details
Main Authors: Ohteki, Toshiaki, Yoshida, Hiroki, Matsuyama, Toshifumi, Duncan, Gordon S., Mak, Tak W., Ohashi, Pamela S.
Format: Online
Language:English
Published: The Rockefeller University Press 1998
Online Access:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2212195/
id pubmed-2212195
recordtype oai_dc
spelling pubmed-22121952008-04-16 The Transcription Factor Interferon Regulatory Factor 1 (IRF-1) Is Important during the Maturation of Natural Killer 1.1+ T Cell Receptor–α/β+ (NK1+ T) Cells, Natural Killer Cells, and Intestinal Intraepithelial T Cells Ohteki, Toshiaki Yoshida, Hiroki Matsuyama, Toshifumi Duncan, Gordon S. Mak, Tak W. Ohashi, Pamela S. Brief Definitive Report In contrast to conventional T cells, natural killer (NK) 1.1+ T cell receptor (TCR)-α/β+ (NK1+T) cells, NK cells, and intestinal intraepithelial lymphocytes (IELs) bearing CD8-α/α chains constitutively express the interleukin (IL)-2 receptor (R)β/15Rβ chain. Recent studies have indicated that IL-2Rβ/15Rβ chain is required for the development of these lymphocyte subsets, outlining the importance of IL-15. In this study, we investigated the development of these lymphocyte subsets in interferon regulatory factor 1–deficient (IRF-1−/−) mice. Surprisingly, all of these lymphocyte subsets were severely reduced in IRF-1−/− mice. Within CD8-α/α+ intestinal IEL subset, TCR-γ/δ+ cells and TCR-α/β+ cells were equally affected by IRF gene disruption. In contrast to intestinal TCR-γ/δ+ cells, thymic TCR-γ/δ+ cells developed normally in IRF-1−/− mice. Northern blot analysis further revealed that the induction of IL-15 messenger RNA was impaired in IRF-1−/− bone marrow cells, and the recovery of these lymphocyte subsets was observed when IRF-1−/− cells were cultured with IL-15 in vitro. These data indicate that IRF-1 regulates IL-15 gene expression, which may control the development of NK1+T cells, NK cells, and CD8-α/α+ IELs. The Rockefeller University Press 1998-03-16 /pmc/articles/PMC2212195/ /pubmed/9500799 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
repository_type Open Access Journal
institution_category Foreign Institution
institution US National Center for Biotechnology Information
building NCBI PubMed
collection Online Access
language English
format Online
author Ohteki, Toshiaki
Yoshida, Hiroki
Matsuyama, Toshifumi
Duncan, Gordon S.
Mak, Tak W.
Ohashi, Pamela S.
spellingShingle Ohteki, Toshiaki
Yoshida, Hiroki
Matsuyama, Toshifumi
Duncan, Gordon S.
Mak, Tak W.
Ohashi, Pamela S.
The Transcription Factor Interferon Regulatory Factor 1 (IRF-1) Is Important during the Maturation of Natural Killer 1.1+ T Cell Receptor–α/β+ (NK1+ T) Cells, Natural Killer Cells, and Intestinal Intraepithelial T Cells
author_facet Ohteki, Toshiaki
Yoshida, Hiroki
Matsuyama, Toshifumi
Duncan, Gordon S.
Mak, Tak W.
Ohashi, Pamela S.
author_sort Ohteki, Toshiaki
title The Transcription Factor Interferon Regulatory Factor 1 (IRF-1) Is Important during the Maturation of Natural Killer 1.1+ T Cell Receptor–α/β+ (NK1+ T) Cells, Natural Killer Cells, and Intestinal Intraepithelial T Cells
title_short The Transcription Factor Interferon Regulatory Factor 1 (IRF-1) Is Important during the Maturation of Natural Killer 1.1+ T Cell Receptor–α/β+ (NK1+ T) Cells, Natural Killer Cells, and Intestinal Intraepithelial T Cells
title_full The Transcription Factor Interferon Regulatory Factor 1 (IRF-1) Is Important during the Maturation of Natural Killer 1.1+ T Cell Receptor–α/β+ (NK1+ T) Cells, Natural Killer Cells, and Intestinal Intraepithelial T Cells
title_fullStr The Transcription Factor Interferon Regulatory Factor 1 (IRF-1) Is Important during the Maturation of Natural Killer 1.1+ T Cell Receptor–α/β+ (NK1+ T) Cells, Natural Killer Cells, and Intestinal Intraepithelial T Cells
title_full_unstemmed The Transcription Factor Interferon Regulatory Factor 1 (IRF-1) Is Important during the Maturation of Natural Killer 1.1+ T Cell Receptor–α/β+ (NK1+ T) Cells, Natural Killer Cells, and Intestinal Intraepithelial T Cells
title_sort transcription factor interferon regulatory factor 1 (irf-1) is important during the maturation of natural killer 1.1+ t cell receptor–α/β+ (nk1+ t) cells, natural killer cells, and intestinal intraepithelial t cells
description In contrast to conventional T cells, natural killer (NK) 1.1+ T cell receptor (TCR)-α/β+ (NK1+T) cells, NK cells, and intestinal intraepithelial lymphocytes (IELs) bearing CD8-α/α chains constitutively express the interleukin (IL)-2 receptor (R)β/15Rβ chain. Recent studies have indicated that IL-2Rβ/15Rβ chain is required for the development of these lymphocyte subsets, outlining the importance of IL-15. In this study, we investigated the development of these lymphocyte subsets in interferon regulatory factor 1–deficient (IRF-1−/−) mice. Surprisingly, all of these lymphocyte subsets were severely reduced in IRF-1−/− mice. Within CD8-α/α+ intestinal IEL subset, TCR-γ/δ+ cells and TCR-α/β+ cells were equally affected by IRF gene disruption. In contrast to intestinal TCR-γ/δ+ cells, thymic TCR-γ/δ+ cells developed normally in IRF-1−/− mice. Northern blot analysis further revealed that the induction of IL-15 messenger RNA was impaired in IRF-1−/− bone marrow cells, and the recovery of these lymphocyte subsets was observed when IRF-1−/− cells were cultured with IL-15 in vitro. These data indicate that IRF-1 regulates IL-15 gene expression, which may control the development of NK1+T cells, NK cells, and CD8-α/α+ IELs.
publisher The Rockefeller University Press
publishDate 1998
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2212195/
_version_ 1611434082738110464