A Plasmodium falciparum Homologue of Plasmodium vivax Reticulocyte Binding Protein (PvRBP1) Defines a Trypsin-resistant Erythrocyte Invasion Pathway
Invasion of erythrocytes by Plasmodium merozoites is an intricate process involving multiple receptor-ligand interactions. The glycophorins and an unknown trypsin sensitive factor are all erythrocyte receptors used during invasion by the major human pathogen Plasmodium falciparum. However, only one...
Main Authors: | , , , , |
---|---|
Format: | Online |
Language: | English |
Published: |
The Rockefeller University Press
2001
|
Online Access: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2193530/ |
id |
pubmed-2193530 |
---|---|
recordtype |
oai_dc |
spelling |
pubmed-21935302008-04-14 A Plasmodium falciparum Homologue of Plasmodium vivax Reticulocyte Binding Protein (PvRBP1) Defines a Trypsin-resistant Erythrocyte Invasion Pathway Rayner, Julian C. Vargas-Serrato, Esmeralda Huber, Curtis S. Galinski, Mary R. Barnwell, John W. Original Article Invasion of erythrocytes by Plasmodium merozoites is an intricate process involving multiple receptor-ligand interactions. The glycophorins and an unknown trypsin sensitive factor are all erythrocyte receptors used during invasion by the major human pathogen Plasmodium falciparum. However, only one erythrocyte receptor, Glycophorin A, has a well-established cognate parasite ligand, the merozoite protein erythrocyte binding antigen-175 (EBA-175). The involvement of several other parasite proteins during invasion have been proposed, but no direct evidence links them with a specific invasion pathway. Here we report the identification and characterization of P. falciparum normocyte binding protein 1 (PfNBP1), an ortholog of Plasmodium vivax reticulocyte binding protein-1. PfNBP1 binds to a sialic acid dependent trypsin-resistant receptor on the erythrocyte surface that appears to be distinct from known invasion receptors. Antibodies against PfNBP1 can inhibit invasion of trypsinized erythrocytes and two P. falciparum strains that express truncated PfNBP1 are unable to invade trypsinized erythrocytes. One of these strain, 7G8, also does not invade Glycophorin B–negative erythrocytes. PfNBP1 therefore defines a novel trypsin-resistant invasion pathway and adds a level of complexity to current models for P. falciparum erythrocyte invasion. The Rockefeller University Press 2001-12-03 /pmc/articles/PMC2193530/ /pubmed/11733572 Text en Copyright © 2001, The Rockefeller University Press This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
repository_type |
Open Access Journal |
institution_category |
Foreign Institution |
institution |
US National Center for Biotechnology Information |
building |
NCBI PubMed |
collection |
Online Access |
language |
English |
format |
Online |
author |
Rayner, Julian C. Vargas-Serrato, Esmeralda Huber, Curtis S. Galinski, Mary R. Barnwell, John W. |
spellingShingle |
Rayner, Julian C. Vargas-Serrato, Esmeralda Huber, Curtis S. Galinski, Mary R. Barnwell, John W. A Plasmodium falciparum Homologue of Plasmodium vivax Reticulocyte Binding Protein (PvRBP1) Defines a Trypsin-resistant Erythrocyte Invasion Pathway |
author_facet |
Rayner, Julian C. Vargas-Serrato, Esmeralda Huber, Curtis S. Galinski, Mary R. Barnwell, John W. |
author_sort |
Rayner, Julian C. |
title |
A Plasmodium falciparum Homologue of Plasmodium vivax Reticulocyte Binding Protein (PvRBP1) Defines a Trypsin-resistant Erythrocyte Invasion Pathway |
title_short |
A Plasmodium falciparum Homologue of Plasmodium vivax Reticulocyte Binding Protein (PvRBP1) Defines a Trypsin-resistant Erythrocyte Invasion Pathway |
title_full |
A Plasmodium falciparum Homologue of Plasmodium vivax Reticulocyte Binding Protein (PvRBP1) Defines a Trypsin-resistant Erythrocyte Invasion Pathway |
title_fullStr |
A Plasmodium falciparum Homologue of Plasmodium vivax Reticulocyte Binding Protein (PvRBP1) Defines a Trypsin-resistant Erythrocyte Invasion Pathway |
title_full_unstemmed |
A Plasmodium falciparum Homologue of Plasmodium vivax Reticulocyte Binding Protein (PvRBP1) Defines a Trypsin-resistant Erythrocyte Invasion Pathway |
title_sort |
plasmodium falciparum homologue of plasmodium vivax reticulocyte binding protein (pvrbp1) defines a trypsin-resistant erythrocyte invasion pathway |
description |
Invasion of erythrocytes by Plasmodium merozoites is an intricate process involving multiple receptor-ligand interactions. The glycophorins and an unknown trypsin sensitive factor are all erythrocyte receptors used during invasion by the major human pathogen Plasmodium falciparum. However, only one erythrocyte receptor, Glycophorin A, has a well-established cognate parasite ligand, the merozoite protein erythrocyte binding antigen-175 (EBA-175). The involvement of several other parasite proteins during invasion have been proposed, but no direct evidence links them with a specific invasion pathway. Here we report the identification and characterization of P. falciparum normocyte binding protein 1 (PfNBP1), an ortholog of Plasmodium vivax reticulocyte binding protein-1. PfNBP1 binds to a sialic acid dependent trypsin-resistant receptor on the erythrocyte surface that appears to be distinct from known invasion receptors. Antibodies against PfNBP1 can inhibit invasion of trypsinized erythrocytes and two P. falciparum strains that express truncated PfNBP1 are unable to invade trypsinized erythrocytes. One of these strain, 7G8, also does not invade Glycophorin B–negative erythrocytes. PfNBP1 therefore defines a novel trypsin-resistant invasion pathway and adds a level of complexity to current models for P. falciparum erythrocyte invasion. |
publisher |
The Rockefeller University Press |
publishDate |
2001 |
url |
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2193530/ |
_version_ |
1611431149865795584 |