Establishment of the Dorso-ventral Axis in Xenopus Embryos Is Presaged by Early Asymmetries in β-Catenin That Are Modulated by the Wnt Signaling Pathway

Eggs of Xenopus laevis undergo a postfertilization cortical rotation that specifies the position of the dorso-ventral axis and activates a transplantable dorsal-determining activity in dorsal blastomeres by the 32-cell stage. There have heretofore been no reported dorso-ventral asymmetries in endoge...

Full description

Bibliographic Details
Main Authors: Larabell, Carolyn A., Torres, Monica, Rowning, Brian A., Yost, Cynthia, Miller, Jeffrey R., Wu, Mike, Kimelman, David, Moon, Randall T.
Format: Online
Language:English
Published: The Rockefeller University Press 1997
Online Access:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2132470/
id pubmed-2132470
recordtype oai_dc
spelling pubmed-21324702008-05-01 Establishment of the Dorso-ventral Axis in Xenopus Embryos Is Presaged by Early Asymmetries in β-Catenin That Are Modulated by the Wnt Signaling Pathway Larabell, Carolyn A. Torres, Monica Rowning, Brian A. Yost, Cynthia Miller, Jeffrey R. Wu, Mike Kimelman, David Moon, Randall T. Article Eggs of Xenopus laevis undergo a postfertilization cortical rotation that specifies the position of the dorso-ventral axis and activates a transplantable dorsal-determining activity in dorsal blastomeres by the 32-cell stage. There have heretofore been no reported dorso-ventral asymmetries in endogenous signaling proteins that may be involved in this dorsal-determining activity during early cleavage stages. We focused on β-catenin as a candidate for an asymmetrically localized dorsal-determining factor since it is both necessary and sufficient for dorsal axis formation. We report that β-catenin displays greater cytoplasmic accumulation on the future dorsal side of the Xenopus embryo by the two-cell stage. This asymmetry persists and increases through early cleavage stages, with β-catenin accumulating in dorsal but not ventral nuclei by the 16- to 32cell stages. We then investigated which potential signaling factors and pathways are capable of modulating the steady-state levels of endogenous β-catenin. Steadystate levels and nuclear accumulation of β-catenin increased in response to ectopic Xenopus Wnt-8 (Xwnt-8) and to the inhibition of glycogen synthase kinase-3, whereas neither Xwnt-5A, BVg1, nor noggin increased β-catenin levels before the mid-blastula stage. As greater levels and nuclear accumulation of β-catenin on the future dorsal side of the embryo correlate with the induction of specific dorsal genes, our data suggest that early asymmetries in β-catenin presage and may specify dorso-ventral differences in gene expression and cell fate. Our data further support the hypothesis that these dorso-ventral differences in β-catenin arise in response to the postfertilization activation of a signaling pathway that involves Xenopus glycogen synthase kinase-3. The Rockefeller University Press 1997-03-10 /pmc/articles/PMC2132470/ /pubmed/9060476 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
repository_type Open Access Journal
institution_category Foreign Institution
institution US National Center for Biotechnology Information
building NCBI PubMed
collection Online Access
language English
format Online
author Larabell, Carolyn A.
Torres, Monica
Rowning, Brian A.
Yost, Cynthia
Miller, Jeffrey R.
Wu, Mike
Kimelman, David
Moon, Randall T.
spellingShingle Larabell, Carolyn A.
Torres, Monica
Rowning, Brian A.
Yost, Cynthia
Miller, Jeffrey R.
Wu, Mike
Kimelman, David
Moon, Randall T.
Establishment of the Dorso-ventral Axis in Xenopus Embryos Is Presaged by Early Asymmetries in β-Catenin That Are Modulated by the Wnt Signaling Pathway
author_facet Larabell, Carolyn A.
Torres, Monica
Rowning, Brian A.
Yost, Cynthia
Miller, Jeffrey R.
Wu, Mike
Kimelman, David
Moon, Randall T.
author_sort Larabell, Carolyn A.
title Establishment of the Dorso-ventral Axis in Xenopus Embryos Is Presaged by Early Asymmetries in β-Catenin That Are Modulated by the Wnt Signaling Pathway
title_short Establishment of the Dorso-ventral Axis in Xenopus Embryos Is Presaged by Early Asymmetries in β-Catenin That Are Modulated by the Wnt Signaling Pathway
title_full Establishment of the Dorso-ventral Axis in Xenopus Embryos Is Presaged by Early Asymmetries in β-Catenin That Are Modulated by the Wnt Signaling Pathway
title_fullStr Establishment of the Dorso-ventral Axis in Xenopus Embryos Is Presaged by Early Asymmetries in β-Catenin That Are Modulated by the Wnt Signaling Pathway
title_full_unstemmed Establishment of the Dorso-ventral Axis in Xenopus Embryos Is Presaged by Early Asymmetries in β-Catenin That Are Modulated by the Wnt Signaling Pathway
title_sort establishment of the dorso-ventral axis in xenopus embryos is presaged by early asymmetries in β-catenin that are modulated by the wnt signaling pathway
description Eggs of Xenopus laevis undergo a postfertilization cortical rotation that specifies the position of the dorso-ventral axis and activates a transplantable dorsal-determining activity in dorsal blastomeres by the 32-cell stage. There have heretofore been no reported dorso-ventral asymmetries in endogenous signaling proteins that may be involved in this dorsal-determining activity during early cleavage stages. We focused on β-catenin as a candidate for an asymmetrically localized dorsal-determining factor since it is both necessary and sufficient for dorsal axis formation. We report that β-catenin displays greater cytoplasmic accumulation on the future dorsal side of the Xenopus embryo by the two-cell stage. This asymmetry persists and increases through early cleavage stages, with β-catenin accumulating in dorsal but not ventral nuclei by the 16- to 32cell stages. We then investigated which potential signaling factors and pathways are capable of modulating the steady-state levels of endogenous β-catenin. Steadystate levels and nuclear accumulation of β-catenin increased in response to ectopic Xenopus Wnt-8 (Xwnt-8) and to the inhibition of glycogen synthase kinase-3, whereas neither Xwnt-5A, BVg1, nor noggin increased β-catenin levels before the mid-blastula stage. As greater levels and nuclear accumulation of β-catenin on the future dorsal side of the embryo correlate with the induction of specific dorsal genes, our data suggest that early asymmetries in β-catenin presage and may specify dorso-ventral differences in gene expression and cell fate. Our data further support the hypothesis that these dorso-ventral differences in β-catenin arise in response to the postfertilization activation of a signaling pathway that involves Xenopus glycogen synthase kinase-3.
publisher The Rockefeller University Press
publishDate 1997
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2132470/
_version_ 1611418357068726272