Compositional studies of myofibrils from rabbit striated muscle

The localization of high-molecular-weight (80,000-200,000-daltons) proteins in the sarcomere of striated muscle has been studied by coordinated electron-microscopic and sodium dodecyl sulfate (SDS) gel electrophoretic analysis of native myofilaments and extracted and digested myofibrils. Methods wer...

Full description

Bibliographic Details
Format: Online
Language:English
Published: The Rockefeller University Press 1976
Online Access:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2109613/
id pubmed-2109613
recordtype oai_dc
spelling pubmed-21096132008-05-01 Compositional studies of myofibrils from rabbit striated muscle Articles The localization of high-molecular-weight (80,000-200,000-daltons) proteins in the sarcomere of striated muscle has been studied by coordinated electron-microscopic and sodium dodecyl sulfate (SDS) gel electrophoretic analysis of native myofilaments and extracted and digested myofibrils. Methods were developed for the isolation of thick and thin filaments and of uncontracted myofibrils which are devoid of endoproteases and membrane fragments. Treatment of crude myofibrils with 0.5% Triton X-100 results in the release of a 110,000-dalton component without affecting the myofibrillar structure. Extraction of uncontracted myofibrils with a relaxing solution of high ionic strength results in the complete disappearance of the A band and M line. In this extract, five other protein bands in addition to myosin are resolved on SDS gels: bands M 1 (190,000 daltons) and M 2 (170,000 daltons), which are suggested to be components of the M line; M 3 (150,000 daltons), a degradation product; and a doublet M 4, M 5 (140,000 daltons), thick- filament protein having the same mobility as C protein. Extraction of myofibrils with 0.15% deoxycholate, previously shown to remove Z-line density, releases a doublet Z 1, Z 2 (90,000 daltons) with the same mobility as alpha-actinin, as well as proteins of 60,000 daltons and less, and small amounts of M 1, M 2, M 4, and M 5; these proteins were not extracted with 0.5% Triton X-100. The C, M-line, and Z-line proteins and/or their binding to myofibrils are very sensitive to tryptic digestion, whereas the M 3 (150,000 daltons) component and an additional band at 110,000 daltons are products of proteolysis. Gentle treatment of myofibrils with an ATP relaxing solution results in the release of thick and thin myofilaments which can be pelleted by 100,000- g centrifugation. These myofilaments lack M-and Z-line structure when examined with the electron microscope, and their electrophoretograms are devoid of the M 1, M 2, Z 1, and Z 2 bands. The M 4, M 5 (C-protein doublet), and M 3 bands, however, remain associated with the filaments. The Rockefeller University Press 1976-01-01 /pmc/articles/PMC2109613/ /pubmed/1245543 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
repository_type Open Access Journal
institution_category Foreign Institution
institution US National Center for Biotechnology Information
building NCBI PubMed
collection Online Access
language English
format Online
title Compositional studies of myofibrils from rabbit striated muscle
spellingShingle Compositional studies of myofibrils from rabbit striated muscle
title_short Compositional studies of myofibrils from rabbit striated muscle
title_full Compositional studies of myofibrils from rabbit striated muscle
title_fullStr Compositional studies of myofibrils from rabbit striated muscle
title_full_unstemmed Compositional studies of myofibrils from rabbit striated muscle
title_sort compositional studies of myofibrils from rabbit striated muscle
description The localization of high-molecular-weight (80,000-200,000-daltons) proteins in the sarcomere of striated muscle has been studied by coordinated electron-microscopic and sodium dodecyl sulfate (SDS) gel electrophoretic analysis of native myofilaments and extracted and digested myofibrils. Methods were developed for the isolation of thick and thin filaments and of uncontracted myofibrils which are devoid of endoproteases and membrane fragments. Treatment of crude myofibrils with 0.5% Triton X-100 results in the release of a 110,000-dalton component without affecting the myofibrillar structure. Extraction of uncontracted myofibrils with a relaxing solution of high ionic strength results in the complete disappearance of the A band and M line. In this extract, five other protein bands in addition to myosin are resolved on SDS gels: bands M 1 (190,000 daltons) and M 2 (170,000 daltons), which are suggested to be components of the M line; M 3 (150,000 daltons), a degradation product; and a doublet M 4, M 5 (140,000 daltons), thick- filament protein having the same mobility as C protein. Extraction of myofibrils with 0.15% deoxycholate, previously shown to remove Z-line density, releases a doublet Z 1, Z 2 (90,000 daltons) with the same mobility as alpha-actinin, as well as proteins of 60,000 daltons and less, and small amounts of M 1, M 2, M 4, and M 5; these proteins were not extracted with 0.5% Triton X-100. The C, M-line, and Z-line proteins and/or their binding to myofibrils are very sensitive to tryptic digestion, whereas the M 3 (150,000 daltons) component and an additional band at 110,000 daltons are products of proteolysis. Gentle treatment of myofibrils with an ATP relaxing solution results in the release of thick and thin myofilaments which can be pelleted by 100,000- g centrifugation. These myofilaments lack M-and Z-line structure when examined with the electron microscope, and their electrophoretograms are devoid of the M 1, M 2, Z 1, and Z 2 bands. The M 4, M 5 (C-protein doublet), and M 3 bands, however, remain associated with the filaments.
publisher The Rockefeller University Press
publishDate 1976
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2109613/
_version_ 1611410706192662528