Effect of compaction load and sintering temperature on the mechanical properties of the Al-SiC nano-composite materials
The development of metal matrix composites (MMCs) has set the stage for a new revolution in materials. In this research, Al matrix composites reinforced with SiC nanoparticles were fabricated by a powder metallurgy process and the effects of compaction load and sintering temperature on the mechanica...
Main Authors: | , , |
---|---|
Format: | Conference or Workshop Item |
Language: | English |
Published: |
American Institute of Physics
2017
|
Subjects: | |
Online Access: | http://umpir.ump.edu.my/id/eprint/21137/ http://umpir.ump.edu.my/id/eprint/21137/ http://umpir.ump.edu.my/id/eprint/21137/1/Effect%20of%20compaction%20load%20and%20sintering%20temperature%20on%20the%20mechanical-fkp-2017-1.pdf |
Summary: | The development of metal matrix composites (MMCs) has set the stage for a new revolution in materials. In this research, Al matrix composites reinforced with SiC nanoparticles were fabricated by a powder metallurgy process and the effects of compaction load and sintering temperature on the mechanical properties of the Al-SiC nano-composite was investigated. The samples were prepared with two different compaction loads, 100 kN and 200 kN, and two different sintering temperatures, 550 °C and 600 °C. Subsequently, their mechanical testing was carried out. The density and hardness of the samples were investigated. The microstructure of the nano-composite was examined by optical microscope. The results showed that the higher compaction load and higher sintering temperature significantly increased the density and hardness of the nano-composite materials. |
---|