Weld bead profile of laser welding dissimilar joints stainless steel

During the process of laser welding, the material consecutively melts and solidifies by a laser beam with a peak high power. Several parameters such as the laser energy, pulse frequency, pulse duration, welding power and welding speed govern the mode of the welding process. The aim of this paper is...

Full description

Bibliographic Details
Main Authors: M., Ishak, S. N., Aqida, Mohammed, Ghusoon R., Abdulhadi, Hassan A.
Format: Conference or Workshop Item
Language:English
English
Published: Institute of Physics Publishing 2017
Subjects:
Online Access:http://umpir.ump.edu.my/id/eprint/18846/
http://umpir.ump.edu.my/id/eprint/18846/
http://umpir.ump.edu.my/id/eprint/18846/1/Weld%20bead%20profile%20of%20laser%20welding%20dissimilar%20joints%20stainless%20steel.pdf
http://umpir.ump.edu.my/id/eprint/18846/6/Weld%20bead%20profile%20of%20laser%20welding%20dissimilar%20joints%20stainless%20steel%20%202.pdf
id oai:umpir.ump.edu.my:18846
recordtype eprints
spelling oai:umpir.ump.edu.my:188462018-04-11T01:47:48Z http://umpir.ump.edu.my/id/eprint/18846/ Weld bead profile of laser welding dissimilar joints stainless steel M., Ishak S. N., Aqida Mohammed, Ghusoon R. Abdulhadi, Hassan A. TP Chemical technology During the process of laser welding, the material consecutively melts and solidifies by a laser beam with a peak high power. Several parameters such as the laser energy, pulse frequency, pulse duration, welding power and welding speed govern the mode of the welding process. The aim of this paper is to investigate the effect of peak power, incident angle, and welding speed on the weld bead geometry. The first investigation in this context was conducted using 2205-316L stainless steel plates through the varying of the welding speed from 1.3 mm/s to 2.1 mm/s. The second investigation was conducted by varying the peak power from 1100 W to 1500 W. From the results of the experiments, the welding speed and laser power had a significant effect on the geometry of the weld bead, and the variation in the diameter of the bead pulse-size. Due to the decrease in the heat input, welding speed affected penetration depth more than bead width, and a narrow width of heat affected zone was achieved ranging from 0.2 to 0.5 mm. Conclusively, weld bead geometry dimensions increase as a function of peak power; at over 1350 W peak power, the dimensions lie within 30 um. Institute of Physics Publishing 2017-11 Conference or Workshop Item PeerReviewed application/pdf en http://umpir.ump.edu.my/id/eprint/18846/1/Weld%20bead%20profile%20of%20laser%20welding%20dissimilar%20joints%20stainless%20steel.pdf application/pdf en http://umpir.ump.edu.my/id/eprint/18846/6/Weld%20bead%20profile%20of%20laser%20welding%20dissimilar%20joints%20stainless%20steel%20%202.pdf M., Ishak and S. N., Aqida and Mohammed, Ghusoon R. and Abdulhadi, Hassan A. (2017) Weld bead profile of laser welding dissimilar joints stainless steel. In: 4th International Conference on Mechanical Engineering Research, ICMER 2017, 1-2 August 2017 , Swiss Garden Hotel and Spa Kuantan, Pahang; Malaysia. pp. 1-9., 257 (1). ISSN 17578981 http://iopscience.iop.org/article/10.1088/1757-899X/257/1/012072/pdf
repository_type Digital Repository
institution_category Local University
institution Universiti Malaysia Pahang
building UMP Institutional Repository
collection Online Access
language English
English
topic TP Chemical technology
spellingShingle TP Chemical technology
M., Ishak
S. N., Aqida
Mohammed, Ghusoon R.
Abdulhadi, Hassan A.
Weld bead profile of laser welding dissimilar joints stainless steel
description During the process of laser welding, the material consecutively melts and solidifies by a laser beam with a peak high power. Several parameters such as the laser energy, pulse frequency, pulse duration, welding power and welding speed govern the mode of the welding process. The aim of this paper is to investigate the effect of peak power, incident angle, and welding speed on the weld bead geometry. The first investigation in this context was conducted using 2205-316L stainless steel plates through the varying of the welding speed from 1.3 mm/s to 2.1 mm/s. The second investigation was conducted by varying the peak power from 1100 W to 1500 W. From the results of the experiments, the welding speed and laser power had a significant effect on the geometry of the weld bead, and the variation in the diameter of the bead pulse-size. Due to the decrease in the heat input, welding speed affected penetration depth more than bead width, and a narrow width of heat affected zone was achieved ranging from 0.2 to 0.5 mm. Conclusively, weld bead geometry dimensions increase as a function of peak power; at over 1350 W peak power, the dimensions lie within 30 um.
format Conference or Workshop Item
author M., Ishak
S. N., Aqida
Mohammed, Ghusoon R.
Abdulhadi, Hassan A.
author_facet M., Ishak
S. N., Aqida
Mohammed, Ghusoon R.
Abdulhadi, Hassan A.
author_sort M., Ishak
title Weld bead profile of laser welding dissimilar joints stainless steel
title_short Weld bead profile of laser welding dissimilar joints stainless steel
title_full Weld bead profile of laser welding dissimilar joints stainless steel
title_fullStr Weld bead profile of laser welding dissimilar joints stainless steel
title_full_unstemmed Weld bead profile of laser welding dissimilar joints stainless steel
title_sort weld bead profile of laser welding dissimilar joints stainless steel
publisher Institute of Physics Publishing
publishDate 2017
url http://umpir.ump.edu.my/id/eprint/18846/
http://umpir.ump.edu.my/id/eprint/18846/
http://umpir.ump.edu.my/id/eprint/18846/1/Weld%20bead%20profile%20of%20laser%20welding%20dissimilar%20joints%20stainless%20steel.pdf
http://umpir.ump.edu.my/id/eprint/18846/6/Weld%20bead%20profile%20of%20laser%20welding%20dissimilar%20joints%20stainless%20steel%20%202.pdf
first_indexed 2018-09-07T02:29:35Z
last_indexed 2018-09-07T02:29:35Z
_version_ 1610914071357423616