Improving the Fuzzy Min-Max Neural Network with a K-nearest Hyperbox Expansion Rule for Pattern Classification
An improved Fuzzy Min-Max (FMM) neural network with a K-nearest hyperbox expansion rule is proposed in this paper. The aim is to reduce the FMM network complexity for undertaking pattern classification tasks. In the proposed model, a useful modification to overcome a number of identified limitations...
Main Authors: | Mohammed, Mohammed Falah, Chee, Peng Lim |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier Ltd
2017
|
Subjects: | |
Online Access: | http://umpir.ump.edu.my/id/eprint/16440/ http://umpir.ump.edu.my/id/eprint/16440/ http://umpir.ump.edu.my/id/eprint/16440/ http://umpir.ump.edu.my/id/eprint/16440/1/fskkp-2017-falah-Improving%20the%20fuzzy%20min-max1.pdf |
Similar Items
-
A New Hyperbox Selection Rule and a Pruning Strategy for the Enhanced Fuzzy Min–Max Neural Network
by: Mohammed, Mohammed Falah, et al.
Published: (2017) -
An Ensemble of Enhanced Fuzzy Min Max Neural Networks for Data Classification
by: Mohammed, Mohammed Falah, et al.
Published: (2017) -
Nearest neighbour group-based classification
by: Samsudin, Noor A., et al.
Published: (2010) -
Hyperbox classifiers for arrhythmia classification
by: Giovanni, Bortolan, et al.
Published: (2007) -
A modified fuzzy min-max neural network with a genetic-algorithm-based rule extractor for pattern classification
by: Quteishat, A., et al.
Published: (2010)