Efficient online subspace learning with an indefinite kernel for visual tracking and recognition

We propose an exact framework for online learning with a family of indefinite (not positive) kernels. As we study the case of nonpositive kernels, we first show how to extend kernel principal component analysis (KPCA) from a reproducing kernel Hilbert space to Krein space. We then formulate an incre...

Full description

Bibliographic Details
Main Authors: Liwicki, Stephan, Zafeiriou, Stefanos, Tzimiropoulos, Georgios, Pantic, Maja
Format: Article
Language:English
Published: IEEE 2012
Online Access:http://eprints.nottingham.ac.uk/31426/
http://eprints.nottingham.ac.uk/31426/
http://eprints.nottingham.ac.uk/31426/
http://eprints.nottingham.ac.uk/31426/1/tzimiroTNN12b.pdf