Investigation of the machinability of non-conductive zro2 with different tool electrodes in EDM
Electrical discharge machining (EDM) is a non-conventional process where complex and difficult-to-cut materials can be machined. Adhesive copper foil as an assisting electrode (AE) is used to cover the zirconia (ZrO2) surface to start the primary spark between the tool electrode and workpiece. Keros...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English English |
Published: |
Universiti Malaysia Pahang
2014
|
Subjects: | |
Online Access: | http://irep.iium.edu.my/40689/ http://irep.iium.edu.my/40689/ http://irep.iium.edu.my/40689/1/2014_IJAME_10_%282%29_1866-1876.pdf http://irep.iium.edu.my/40689/4/40689_Investigation%20of%20the%20machinability%20of%20non-conductive.SCOPUSpdf.pdf |
id |
iium-40689 |
---|---|
recordtype |
eprints |
spelling |
iium-406892017-09-21T06:32:06Z http://irep.iium.edu.my/40689/ Investigation of the machinability of non-conductive zro2 with different tool electrodes in EDM Moudood, M. A. Sabur, A. Lutfi, A. Ali, Mohammad Yeakub Jaafar, Israd Hakim TS Manufactures TS1080 Paper manufacture. Woodpulp industry Electrical discharge machining (EDM) is a non-conventional process where complex and difficult-to-cut materials can be machined. Adhesive copper foil as an assisting electrode (AE) is used to cover the zirconia (ZrO2) surface to start the primary spark between the tool electrode and workpiece. Kerosene is dissociated and produces a carbon layer on the workpiece surface when machining of the initial copper foil is completed. Thus machining continues although ZrO2 is a non-conductive material. In this study, the EDM of ZrO2 is investigated with graphite, copper and brass tool electrodes. Material removal rate (MRR) and surface characteristics are analysed. Experiments are performed by varying the parameters peak current and pulse-on time with different tool electrodes. From the experiments, MRR on ZrO2 has been compared for three different tool electrodes. It is found that the graphite tool electrode performs the highest MRR for EDM of ZrO2. The least MRR is obtained by the brass tool electrode. However, better surface quality is observed with the copper tool electrode than EDM with brass or graphite electrodes. This investigation with varying machining parameters and different tool electrodes can be helpful in finding an effective use of the EDM process. Universiti Malaysia Pahang 2014 Article PeerReviewed application/pdf en http://irep.iium.edu.my/40689/1/2014_IJAME_10_%282%29_1866-1876.pdf application/pdf en http://irep.iium.edu.my/40689/4/40689_Investigation%20of%20the%20machinability%20of%20non-conductive.SCOPUSpdf.pdf Moudood, M. A. and Sabur, A. and Lutfi, A. and Ali, Mohammad Yeakub and Jaafar, Israd Hakim (2014) Investigation of the machinability of non-conductive zro2 with different tool electrodes in EDM. International Journal of Automotive and Mechanical Engineering (IJAME), 10. pp. 1866-1876. ISSN 1985-9385 (P) 2180-1606(O) http://ijame.ump.edu.my/index.php?option=com_content&view=article&id=38&Itemid=83 |
repository_type |
Digital Repository |
institution_category |
Local University |
institution |
International Islamic University Malaysia |
building |
IIUM Repository |
collection |
Online Access |
language |
English English |
topic |
TS Manufactures TS1080 Paper manufacture. Woodpulp industry |
spellingShingle |
TS Manufactures TS1080 Paper manufacture. Woodpulp industry Moudood, M. A. Sabur, A. Lutfi, A. Ali, Mohammad Yeakub Jaafar, Israd Hakim Investigation of the machinability of non-conductive zro2 with different tool electrodes in EDM |
description |
Electrical discharge machining (EDM) is a non-conventional process where complex and difficult-to-cut materials can be machined. Adhesive copper foil as an assisting electrode (AE) is used to cover the zirconia (ZrO2) surface to start the primary spark between the tool electrode and workpiece. Kerosene is dissociated and produces a carbon layer on the workpiece surface when machining of the initial copper foil is completed. Thus machining continues although ZrO2 is a non-conductive material. In this study, the EDM of ZrO2 is investigated with graphite, copper and brass tool electrodes. Material removal rate (MRR) and surface characteristics are analysed. Experiments are performed by varying the parameters peak current and pulse-on time with different tool electrodes. From the experiments, MRR on ZrO2 has been compared for three different tool electrodes. It is found that the graphite tool electrode performs the highest MRR for EDM of ZrO2. The least MRR is obtained by the brass tool electrode. However, better surface quality is observed with the copper tool electrode than EDM with brass or graphite electrodes. This investigation with varying machining parameters and different tool electrodes can be helpful in finding an effective use of the EDM process. |
format |
Article |
author |
Moudood, M. A. Sabur, A. Lutfi, A. Ali, Mohammad Yeakub Jaafar, Israd Hakim |
author_facet |
Moudood, M. A. Sabur, A. Lutfi, A. Ali, Mohammad Yeakub Jaafar, Israd Hakim |
author_sort |
Moudood, M. A. |
title |
Investigation of the machinability of non-conductive zro2 with different tool electrodes in EDM |
title_short |
Investigation of the machinability of non-conductive zro2 with different tool electrodes in EDM |
title_full |
Investigation of the machinability of non-conductive zro2 with different tool electrodes in EDM |
title_fullStr |
Investigation of the machinability of non-conductive zro2 with different tool electrodes in EDM |
title_full_unstemmed |
Investigation of the machinability of non-conductive zro2 with different tool electrodes in EDM |
title_sort |
investigation of the machinability of non-conductive zro2 with different tool electrodes in edm |
publisher |
Universiti Malaysia Pahang |
publishDate |
2014 |
url |
http://irep.iium.edu.my/40689/ http://irep.iium.edu.my/40689/ http://irep.iium.edu.my/40689/1/2014_IJAME_10_%282%29_1866-1876.pdf http://irep.iium.edu.my/40689/4/40689_Investigation%20of%20the%20machinability%20of%20non-conductive.SCOPUSpdf.pdf |
first_indexed |
2018-09-07T06:10:50Z |
last_indexed |
2018-09-07T06:10:50Z |
_version_ |
1610927990616621056 |