Analysis of the $$QQ\bar{Q}\bar{Q}$$ Q Q Q ¯ Q ¯ tetraquark states with QCD sum rules
Abstract In this article, we study the $$J^{PC}=0^{++}$$ J P C = 0 + + and $$2^{++}$$ 2 + + $$QQ\bar{Q}\bar{Q}$$ Q Q Q ¯ Q ¯ tetraquark states with the QCD sum rules, and we obtain the predictions $$M_{X(cc\bar{c}\bar{c},0^{++})} =5.99\pm 0.08\,\mathrm {GeV}$$ M X ( c c c ¯ c ¯ , 0 + + ) = 5.99 ± 0....
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Springer
2017-06-01
|
Series: | European Physical Journal C: Particles and Fields |
Online Access: | http://link.springer.com/article/10.1140/epjc/s10052-017-4997-0 |
id |
doaj-art-df4a781167d645f6a05d234ade3263e3 |
---|---|
recordtype |
oai_dc |
spelling |
doaj-art-df4a781167d645f6a05d234ade3263e32018-08-20T15:33:43ZengSpringerEuropean Physical Journal C: Particles and Fields1434-60441434-60522017-06-0177711210.1140/epjc/s10052-017-4997-0Analysis of the $$QQ\bar{Q}\bar{Q}$$ Q Q Q ¯ Q ¯ tetraquark states with QCD sum rulesZhi-Gang Wang0Department of Physics, North China Electric Power UniversityAbstract In this article, we study the $$J^{PC}=0^{++}$$ J P C = 0 + + and $$2^{++}$$ 2 + + $$QQ\bar{Q}\bar{Q}$$ Q Q Q ¯ Q ¯ tetraquark states with the QCD sum rules, and we obtain the predictions $$M_{X(cc\bar{c}\bar{c},0^{++})} =5.99\pm 0.08\,\mathrm {GeV}$$ M X ( c c c ¯ c ¯ , 0 + + ) = 5.99 ± 0.08 GeV , $$M_{X(cc\bar{c}\bar{c},2^{++})} =6.09\pm 0.08\,\mathrm {GeV}$$ M X ( c c c ¯ c ¯ , 2 + + ) = 6.09 ± 0.08 GeV , $$M_{X(bb\bar{b}\bar{b},0^{++})} =18.84\pm 0.09\,\mathrm {GeV}$$ M X ( b b b ¯ b ¯ , 0 + + ) = 18.84 ± 0.09 GeV and $$M_{X(bb\bar{b}\bar{b},2^{++})} =18.85\pm 0.09\,\mathrm {GeV}$$ M X ( b b b ¯ b ¯ , 2 + + ) = 18.85 ± 0.09 GeV , which can be confronted to the experimental data in the future. Furthermore, we illustrate that the diquark–antidiquark type tetraquark state can be taken as a special superposition of a series of meson–meson pairs and that it embodies the net effects.http://link.springer.com/article/10.1140/epjc/s10052-017-4997-0 |
institution |
Open Data Bank |
collection |
Open Access Journals |
building |
Directory of Open Access Journals |
language |
English |
format |
Article |
author |
Zhi-Gang Wang |
spellingShingle |
Zhi-Gang Wang Analysis of the $$QQ\bar{Q}\bar{Q}$$ Q Q Q ¯ Q ¯ tetraquark states with QCD sum rules European Physical Journal C: Particles and Fields |
author_facet |
Zhi-Gang Wang |
author_sort |
Zhi-Gang Wang |
title |
Analysis of the $$QQ\bar{Q}\bar{Q}$$ Q Q Q ¯ Q ¯ tetraquark states with QCD sum rules |
title_short |
Analysis of the $$QQ\bar{Q}\bar{Q}$$ Q Q Q ¯ Q ¯ tetraquark states with QCD sum rules |
title_full |
Analysis of the $$QQ\bar{Q}\bar{Q}$$ Q Q Q ¯ Q ¯ tetraquark states with QCD sum rules |
title_fullStr |
Analysis of the $$QQ\bar{Q}\bar{Q}$$ Q Q Q ¯ Q ¯ tetraquark states with QCD sum rules |
title_full_unstemmed |
Analysis of the $$QQ\bar{Q}\bar{Q}$$ Q Q Q ¯ Q ¯ tetraquark states with QCD sum rules |
title_sort |
analysis of the $$qq\bar{q}\bar{q}$$ q q q ¯ q ¯ tetraquark states with qcd sum rules |
publisher |
Springer |
series |
European Physical Journal C: Particles and Fields |
issn |
1434-6044 1434-6052 |
publishDate |
2017-06-01 |
description |
Abstract In this article, we study the $$J^{PC}=0^{++}$$ J P C = 0 + + and $$2^{++}$$ 2 + + $$QQ\bar{Q}\bar{Q}$$ Q Q Q ¯ Q ¯ tetraquark states with the QCD sum rules, and we obtain the predictions $$M_{X(cc\bar{c}\bar{c},0^{++})} =5.99\pm 0.08\,\mathrm {GeV}$$ M X ( c c c ¯ c ¯ , 0 + + ) = 5.99 ± 0.08 GeV , $$M_{X(cc\bar{c}\bar{c},2^{++})} =6.09\pm 0.08\,\mathrm {GeV}$$ M X ( c c c ¯ c ¯ , 2 + + ) = 6.09 ± 0.08 GeV , $$M_{X(bb\bar{b}\bar{b},0^{++})} =18.84\pm 0.09\,\mathrm {GeV}$$ M X ( b b b ¯ b ¯ , 0 + + ) = 18.84 ± 0.09 GeV and $$M_{X(bb\bar{b}\bar{b},2^{++})} =18.85\pm 0.09\,\mathrm {GeV}$$ M X ( b b b ¯ b ¯ , 2 + + ) = 18.85 ± 0.09 GeV , which can be confronted to the experimental data in the future. Furthermore, we illustrate that the diquark–antidiquark type tetraquark state can be taken as a special superposition of a series of meson–meson pairs and that it embodies the net effects. |
url |
http://link.springer.com/article/10.1140/epjc/s10052-017-4997-0 |
_version_ |
1612687625891610624 |