Analysis of the $$QQ\bar{Q}\bar{Q}$$ Q Q Q ¯ Q ¯ tetraquark states with QCD sum rules

Abstract In this article, we study the $$J^{PC}=0^{++}$$ J P C = 0 + + and $$2^{++}$$ 2 + + $$QQ\bar{Q}\bar{Q}$$ Q Q Q ¯ Q ¯ tetraquark states with the QCD sum rules, and we obtain the predictions $$M_{X(cc\bar{c}\bar{c},0^{++})} =5.99\pm 0.08\,\mathrm {GeV}$$ M X ( c c c ¯ c ¯ , 0 + + ) = 5.99 ± 0....

Full description

Bibliographic Details
Main Author: Zhi-Gang Wang
Format: Article
Language:English
Published: Springer 2017-06-01
Series:European Physical Journal C: Particles and Fields
Online Access:http://link.springer.com/article/10.1140/epjc/s10052-017-4997-0
id doaj-art-df4a781167d645f6a05d234ade3263e3
recordtype oai_dc
spelling doaj-art-df4a781167d645f6a05d234ade3263e32018-08-20T15:33:43ZengSpringerEuropean Physical Journal C: Particles and Fields1434-60441434-60522017-06-0177711210.1140/epjc/s10052-017-4997-0Analysis of the $$QQ\bar{Q}\bar{Q}$$ Q Q Q ¯ Q ¯ tetraquark states with QCD sum rulesZhi-Gang Wang0Department of Physics, North China Electric Power UniversityAbstract In this article, we study the $$J^{PC}=0^{++}$$ J P C = 0 + + and $$2^{++}$$ 2 + + $$QQ\bar{Q}\bar{Q}$$ Q Q Q ¯ Q ¯ tetraquark states with the QCD sum rules, and we obtain the predictions $$M_{X(cc\bar{c}\bar{c},0^{++})} =5.99\pm 0.08\,\mathrm {GeV}$$ M X ( c c c ¯ c ¯ , 0 + + ) = 5.99 ± 0.08 GeV , $$M_{X(cc\bar{c}\bar{c},2^{++})} =6.09\pm 0.08\,\mathrm {GeV}$$ M X ( c c c ¯ c ¯ , 2 + + ) = 6.09 ± 0.08 GeV , $$M_{X(bb\bar{b}\bar{b},0^{++})} =18.84\pm 0.09\,\mathrm {GeV}$$ M X ( b b b ¯ b ¯ , 0 + + ) = 18.84 ± 0.09 GeV and $$M_{X(bb\bar{b}\bar{b},2^{++})} =18.85\pm 0.09\,\mathrm {GeV}$$ M X ( b b b ¯ b ¯ , 2 + + ) = 18.85 ± 0.09 GeV , which can be confronted to the experimental data in the future. Furthermore, we illustrate that the diquark–antidiquark type tetraquark state can be taken as a special superposition of a series of meson–meson pairs and that it embodies the net effects.http://link.springer.com/article/10.1140/epjc/s10052-017-4997-0
institution Open Data Bank
collection Open Access Journals
building Directory of Open Access Journals
language English
format Article
author Zhi-Gang Wang
spellingShingle Zhi-Gang Wang
Analysis of the $$QQ\bar{Q}\bar{Q}$$ Q Q Q ¯ Q ¯ tetraquark states with QCD sum rules
European Physical Journal C: Particles and Fields
author_facet Zhi-Gang Wang
author_sort Zhi-Gang Wang
title Analysis of the $$QQ\bar{Q}\bar{Q}$$ Q Q Q ¯ Q ¯ tetraquark states with QCD sum rules
title_short Analysis of the $$QQ\bar{Q}\bar{Q}$$ Q Q Q ¯ Q ¯ tetraquark states with QCD sum rules
title_full Analysis of the $$QQ\bar{Q}\bar{Q}$$ Q Q Q ¯ Q ¯ tetraquark states with QCD sum rules
title_fullStr Analysis of the $$QQ\bar{Q}\bar{Q}$$ Q Q Q ¯ Q ¯ tetraquark states with QCD sum rules
title_full_unstemmed Analysis of the $$QQ\bar{Q}\bar{Q}$$ Q Q Q ¯ Q ¯ tetraquark states with QCD sum rules
title_sort analysis of the $$qq\bar{q}\bar{q}$$ q q q ¯ q ¯ tetraquark states with qcd sum rules
publisher Springer
series European Physical Journal C: Particles and Fields
issn 1434-6044
1434-6052
publishDate 2017-06-01
description Abstract In this article, we study the $$J^{PC}=0^{++}$$ J P C = 0 + + and $$2^{++}$$ 2 + + $$QQ\bar{Q}\bar{Q}$$ Q Q Q ¯ Q ¯ tetraquark states with the QCD sum rules, and we obtain the predictions $$M_{X(cc\bar{c}\bar{c},0^{++})} =5.99\pm 0.08\,\mathrm {GeV}$$ M X ( c c c ¯ c ¯ , 0 + + ) = 5.99 ± 0.08 GeV , $$M_{X(cc\bar{c}\bar{c},2^{++})} =6.09\pm 0.08\,\mathrm {GeV}$$ M X ( c c c ¯ c ¯ , 2 + + ) = 6.09 ± 0.08 GeV , $$M_{X(bb\bar{b}\bar{b},0^{++})} =18.84\pm 0.09\,\mathrm {GeV}$$ M X ( b b b ¯ b ¯ , 0 + + ) = 18.84 ± 0.09 GeV and $$M_{X(bb\bar{b}\bar{b},2^{++})} =18.85\pm 0.09\,\mathrm {GeV}$$ M X ( b b b ¯ b ¯ , 2 + + ) = 18.85 ± 0.09 GeV , which can be confronted to the experimental data in the future. Furthermore, we illustrate that the diquark–antidiquark type tetraquark state can be taken as a special superposition of a series of meson–meson pairs and that it embodies the net effects.
url http://link.springer.com/article/10.1140/epjc/s10052-017-4997-0
_version_ 1612687625891610624