Reconstructing cell cycle and disease progression using deep learning
The interpretation of information-rich, high-throughput single-cell data is a challenge requiring sophisticated computational tools. Here the authors demonstrate a deep convolutional neural network that can classify cell cycle status on-the-fly.
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Publishing Group
2017-09-01
|
Series: | Nature Communications |
Online Access: | http://link.springer.com/article/10.1038/s41467-017-00623-3 |
id |
doaj-art-84ab3244feda4d7887c609a87464639f |
---|---|
recordtype |
oai_dc |
spelling |
doaj-art-84ab3244feda4d7887c609a87464639f2018-09-09T11:16:55ZengNature Publishing GroupNature Communications2041-17232017-09-01811610.1038/s41467-017-00623-3Reconstructing cell cycle and disease progression using deep learningPhilipp Eulenberg0Niklas Köhler1Thomas Blasi2Andrew Filby3Anne E. Carpenter4Paul Rees5Fabian J. Theis6F. Alexander Wolf7Helmholtz Zentrum München—German Research Center for Environmental Health, Institute of Computational BiologyHelmholtz Zentrum München—German Research Center for Environmental Health, Institute of Computational BiologyHelmholtz Zentrum München—German Research Center for Environmental Health, Institute of Computational BiologyFlow Cytometry Core Facility, Faculty of Medical Sciences, Newcastle UniversityImaging Platform at the Broad Institute of Harvard and Massachusetts Institute of TechnologyImaging Platform at the Broad Institute of Harvard and Massachusetts Institute of TechnologyHelmholtz Zentrum München—German Research Center for Environmental Health, Institute of Computational BiologyHelmholtz Zentrum München—German Research Center for Environmental Health, Institute of Computational BiologyThe interpretation of information-rich, high-throughput single-cell data is a challenge requiring sophisticated computational tools. Here the authors demonstrate a deep convolutional neural network that can classify cell cycle status on-the-fly.http://link.springer.com/article/10.1038/s41467-017-00623-3 |
institution |
Open Data Bank |
collection |
Open Access Journals |
building |
Directory of Open Access Journals |
language |
English |
format |
Article |
author |
Philipp Eulenberg Niklas Köhler Thomas Blasi Andrew Filby Anne E. Carpenter Paul Rees Fabian J. Theis F. Alexander Wolf |
spellingShingle |
Philipp Eulenberg Niklas Köhler Thomas Blasi Andrew Filby Anne E. Carpenter Paul Rees Fabian J. Theis F. Alexander Wolf Reconstructing cell cycle and disease progression using deep learning Nature Communications |
author_facet |
Philipp Eulenberg Niklas Köhler Thomas Blasi Andrew Filby Anne E. Carpenter Paul Rees Fabian J. Theis F. Alexander Wolf |
author_sort |
Philipp Eulenberg |
title |
Reconstructing cell cycle and disease progression using deep learning |
title_short |
Reconstructing cell cycle and disease progression using deep learning |
title_full |
Reconstructing cell cycle and disease progression using deep learning |
title_fullStr |
Reconstructing cell cycle and disease progression using deep learning |
title_full_unstemmed |
Reconstructing cell cycle and disease progression using deep learning |
title_sort |
reconstructing cell cycle and disease progression using deep learning |
publisher |
Nature Publishing Group |
series |
Nature Communications |
issn |
2041-1723 |
publishDate |
2017-09-01 |
description |
The interpretation of information-rich, high-throughput single-cell data is a challenge requiring sophisticated computational tools. Here the authors demonstrate a deep convolutional neural network that can classify cell cycle status on-the-fly. |
url |
http://link.springer.com/article/10.1038/s41467-017-00623-3 |
_version_ |
1612609951145918464 |