Which numbers are real?
An exploration of number systems that extend and generalise the real numbers, of interest to students, mathematics teachers and enthusiasts
| Main Author: | |
|---|---|
| Format: | Book |
| Language: | English |
| Published: |
Washington :
Mathematical Association of America ,
c2012
|
| Series: | Classroom resource materials
|
| Subjects: | |
| Online Access: | Table of contents only Contributor biographical information Publisher description |
MARC
| LEADER | 00000cam a2200000 7i4500 | ||
|---|---|---|---|
| 001 | 0000084479 | ||
| 005 | 20140101.0 | ||
| 008 | 130624s2012 wau eng | ||
| 020 | |a 0883857774 (hardback : alk. paper) | ||
| 020 | |a 9780883857779 (hardback : alk. paper) | ||
| 050 | 0 | 0 | |a QA255 |b .H46 2012 |
| 090 | 0 | 0 | |a QA255 |b .H46 2012 |
| 100 | 1 | |a Henle, Michael , |e author | |
| 245 | 1 | 0 | |a Which numbers are real? |c Michael Henle |
| 260 | |a Washington : |b Mathematical Association of America , |c c2012 | ||
| 300 | |a x, 219 p. : |b ill. ; |c 23 cm. | ||
| 490 | 1 | |a Classroom resource materials | |
| 504 | |a Includes bibliographical references (p. 205-208) and index | ||
| 505 | 0 | |a 1. Axioms for the reals -- 2. Construction of the reals -- 3. The complex numbers -- 4. The quaternions -- 5. The constructive reals -- 6. The hyperreals -- 7. The surreals | |
| 520 | |a An exploration of number systems that extend and generalise the real numbers, of interest to students, mathematics teachers and enthusiasts | ||
| 650 | 0 | |a Number theory | |
| 650 | 0 | |a Numbers, Complex | |
| 650 | 0 | |a Numbers, Real | |
| 856 | 4 | 1 | |3 Table of contents only |u http://www.loc.gov/catdir/enhancements/fy1212/2012937493-t.html |
| 856 | 4 | 2 | |3 Contributor biographical information |u http://www.loc.gov/catdir/enhancements/fy1212/2012937493-b.html |
| 856 | 4 | 2 | |3 Publisher description |u http://www.loc.gov/catdir/enhancements/fy1212/2012937493-d.html |
| 999 | |a 1000157946 |b Book |c OPEN SHELF (30 DAYS) |e Gong Badak Campus | ||