The development of BEEM modeling for the characterization of Si/Ge self-assembled quantum dot heterostructures

In this paper we present a ballistic electron emission microscopy (BEEM) modeling for the Si/Ge quantum dots characterization. BEEM is a new characterization technique by using electrons ejected from the scanning tunneling microscopy (STM) tip to investigate the metal-semiconductor interfaces. Becau...

Full description

Bibliographic Details
Main Authors: Hutagalung, Sabar D., Yaacob, Khatijah A., Sakrani, Samsudi, Mat Isa, Ahmad R.
Format: Conference or Workshop Item
Language:English
Published: 2006
Subjects:
Online Access:http://eprints.utm.my/7792/
http://eprints.utm.my/7792/1/Samsudi_Bin_Sakrani_2006_The_Development_Of_BEEM_Modelling.pdf
_version_ 1848891545593315328
author Hutagalung, Sabar D.
Yaacob, Khatijah A.
Sakrani, Samsudi
Mat Isa, Ahmad R.
author_facet Hutagalung, Sabar D.
Yaacob, Khatijah A.
Sakrani, Samsudi
Mat Isa, Ahmad R.
author_sort Hutagalung, Sabar D.
building UTeM Institutional Repository
collection Online Access
description In this paper we present a ballistic electron emission microscopy (BEEM) modeling for the Si/Ge quantum dots characterization. BEEM is a new characterization technique by using electrons ejected from the scanning tunneling microscopy (STM) tip to investigate the metal-semiconductor interfaces. Because of the high resolution of the STM system, BEEM is promising in the characterization of quantum dots as the charge transport on individual dot can be characterized compared to the multitude of dots necessitated in other techniques. This method requires three terminals: a connection to the STM tip to inject electrons, a connection to the sample to collect electrons that traverse the interface, and a third grounding terminal. The energy and angular distribution of the injected electrons can be controlled by varying the tip potential. By using the characteristic data of the injected and collected electrons, many useful transport-related properties of the sample can be obtained. The silicon quantum dots (Si QDs) may be fabricated by taking advantage of the Stranski-Krastanov growth model. Germanium layer has been choosed as a barrier layer due to the large lattice mismatch between Si and Ge. The n-type Si(100) was oxidized to grow ∼10 nm thickness of SiO2 layer. Hemispherical Si nanodot were self-assembled growth on an HF-treated SiO2 layer by LPCVD technique. The Ge layer were deposited on the pregrow silicon dot. Thin gold (Au) films cap can be used to provide a conductive layer on top of the Si QDs for the BEEM measurement. When the STM tip is positioned on the dot, the injected electron would experience a band profile similar to a double-barrier heterostructure, wherein the quantum dot act as the potential well. However, when the tip is positioned away from the dot (off dot), the injected charge would rather experience a potential step (single barrier) with the band profile.
first_indexed 2025-11-15T20:59:40Z
format Conference or Workshop Item
id utm-7792
institution Universiti Teknologi Malaysia
institution_category Local University
language English
last_indexed 2025-11-15T20:59:40Z
publishDate 2006
recordtype eprints
repository_type Digital Repository
spelling utm-77922010-06-02T01:48:14Z http://eprints.utm.my/7792/ The development of BEEM modeling for the characterization of Si/Ge self-assembled quantum dot heterostructures Hutagalung, Sabar D. Yaacob, Khatijah A. Sakrani, Samsudi Mat Isa, Ahmad R. QC Physics In this paper we present a ballistic electron emission microscopy (BEEM) modeling for the Si/Ge quantum dots characterization. BEEM is a new characterization technique by using electrons ejected from the scanning tunneling microscopy (STM) tip to investigate the metal-semiconductor interfaces. Because of the high resolution of the STM system, BEEM is promising in the characterization of quantum dots as the charge transport on individual dot can be characterized compared to the multitude of dots necessitated in other techniques. This method requires three terminals: a connection to the STM tip to inject electrons, a connection to the sample to collect electrons that traverse the interface, and a third grounding terminal. The energy and angular distribution of the injected electrons can be controlled by varying the tip potential. By using the characteristic data of the injected and collected electrons, many useful transport-related properties of the sample can be obtained. The silicon quantum dots (Si QDs) may be fabricated by taking advantage of the Stranski-Krastanov growth model. Germanium layer has been choosed as a barrier layer due to the large lattice mismatch between Si and Ge. The n-type Si(100) was oxidized to grow ∼10 nm thickness of SiO2 layer. Hemispherical Si nanodot were self-assembled growth on an HF-treated SiO2 layer by LPCVD technique. The Ge layer were deposited on the pregrow silicon dot. Thin gold (Au) films cap can be used to provide a conductive layer on top of the Si QDs for the BEEM measurement. When the STM tip is positioned on the dot, the injected electron would experience a band profile similar to a double-barrier heterostructure, wherein the quantum dot act as the potential well. However, when the tip is positioned away from the dot (off dot), the injected charge would rather experience a potential step (single barrier) with the band profile. 2006 Conference or Workshop Item PeerReviewed application/pdf en http://eprints.utm.my/7792/1/Samsudi_Bin_Sakrani_2006_The_Development_Of_BEEM_Modelling.pdf Hutagalung, Sabar D. and Yaacob, Khatijah A. and Sakrani, Samsudi and Mat Isa, Ahmad R. (2006) The development of BEEM modeling for the characterization of Si/Ge self-assembled quantum dot heterostructures. In: NanoSingapore 2006: IEEE Conference on Emerging Technologies - Nanoelectronics - Proceedings, 10-13 Jan. 2006. http://dx.doi.org/10.1109/NANOEL.2006.1609735
spellingShingle QC Physics
Hutagalung, Sabar D.
Yaacob, Khatijah A.
Sakrani, Samsudi
Mat Isa, Ahmad R.
The development of BEEM modeling for the characterization of Si/Ge self-assembled quantum dot heterostructures
title The development of BEEM modeling for the characterization of Si/Ge self-assembled quantum dot heterostructures
title_full The development of BEEM modeling for the characterization of Si/Ge self-assembled quantum dot heterostructures
title_fullStr The development of BEEM modeling for the characterization of Si/Ge self-assembled quantum dot heterostructures
title_full_unstemmed The development of BEEM modeling for the characterization of Si/Ge self-assembled quantum dot heterostructures
title_short The development of BEEM modeling for the characterization of Si/Ge self-assembled quantum dot heterostructures
title_sort development of beem modeling for the characterization of si/ge self-assembled quantum dot heterostructures
topic QC Physics
url http://eprints.utm.my/7792/
http://eprints.utm.my/7792/
http://eprints.utm.my/7792/1/Samsudi_Bin_Sakrani_2006_The_Development_Of_BEEM_Modelling.pdf