Pemodelan rekomendasi halaman web berasaskan teknik perlombongan data

The continuous growth of the information on the Internet makes it necessary for users to be provided with a convenient and yet accurate tools to capture the information needed. Web usage mining has gained more popularity among researchers in discovering the users browsing behavior by mining the web...

Full description

Bibliographic Details
Main Author: Ahmad Hijazi, Mohd. Hanafi
Format: Thesis
Language:English
Published: 2005
Subjects:
Online Access:http://eprints.utm.my/4291/
http://eprints.utm.my/4291/1/MohdHanafiAhmadHijaziMFSKSM2005.pdf
_version_ 1848890764628590592
author Ahmad Hijazi, Mohd. Hanafi
author_facet Ahmad Hijazi, Mohd. Hanafi
author_sort Ahmad Hijazi, Mohd. Hanafi
building UTeM Institutional Repository
collection Online Access
description The continuous growth of the information on the Internet makes it necessary for users to be provided with a convenient and yet accurate tools to capture the information needed. Web usage mining has gained more popularity among researchers in discovering the users browsing behavior by mining the web server log that records all the users’ transactions activities. By applying it into the recommendation engine, Web personalization can be executed based on the discovered user’s behavior. Nevertheless, the efficiency of the generated recommendations is still an issue for researchers. This thesis is focusing on the development of a usage model for predictions based on association rule and similarity measures, named ARsim. Additional parameter was used to measure the similarities between URLs, which is the time user spent on a particular page. To generate the final recommendation, similarity between URLs contained in the active user profile was calculated upon the matched Web usage profiles and finally the top- N most similar URLs are then recommended to the user. Three evaluation metrics, which is commonly used by other researchers for evaluation of Web page recommendation model, was applied to evaluate the efficacy of ARsim, namely precision, coverage and F1. Comparison to two other different techniques, traditional association rule and eVZpro found that the integration of rules and similarity measures allow only the most appropriate URLs to be recommended and thus increase the efficiency of the Web page recommendation engine.
first_indexed 2025-11-15T20:47:16Z
format Thesis
id utm-4291
institution Universiti Teknologi Malaysia
institution_category Local University
language English
last_indexed 2025-11-15T20:47:16Z
publishDate 2005
recordtype eprints
repository_type Digital Repository
spelling utm-42912018-01-16T08:15:05Z http://eprints.utm.my/4291/ Pemodelan rekomendasi halaman web berasaskan teknik perlombongan data Ahmad Hijazi, Mohd. Hanafi QA75 Electronic computers. Computer science The continuous growth of the information on the Internet makes it necessary for users to be provided with a convenient and yet accurate tools to capture the information needed. Web usage mining has gained more popularity among researchers in discovering the users browsing behavior by mining the web server log that records all the users’ transactions activities. By applying it into the recommendation engine, Web personalization can be executed based on the discovered user’s behavior. Nevertheless, the efficiency of the generated recommendations is still an issue for researchers. This thesis is focusing on the development of a usage model for predictions based on association rule and similarity measures, named ARsim. Additional parameter was used to measure the similarities between URLs, which is the time user spent on a particular page. To generate the final recommendation, similarity between URLs contained in the active user profile was calculated upon the matched Web usage profiles and finally the top- N most similar URLs are then recommended to the user. Three evaluation metrics, which is commonly used by other researchers for evaluation of Web page recommendation model, was applied to evaluate the efficacy of ARsim, namely precision, coverage and F1. Comparison to two other different techniques, traditional association rule and eVZpro found that the integration of rules and similarity measures allow only the most appropriate URLs to be recommended and thus increase the efficiency of the Web page recommendation engine. 2005-03 Thesis NonPeerReviewed application/pdf en http://eprints.utm.my/4291/1/MohdHanafiAhmadHijaziMFSKSM2005.pdf Ahmad Hijazi, Mohd. Hanafi (2005) Pemodelan rekomendasi halaman web berasaskan teknik perlombongan data. Masters thesis, Universiti Teknologi Malaysia, Faculty of Computer Science and Information System.
spellingShingle QA75 Electronic computers. Computer science
Ahmad Hijazi, Mohd. Hanafi
Pemodelan rekomendasi halaman web berasaskan teknik perlombongan data
title Pemodelan rekomendasi halaman web berasaskan teknik perlombongan data
title_full Pemodelan rekomendasi halaman web berasaskan teknik perlombongan data
title_fullStr Pemodelan rekomendasi halaman web berasaskan teknik perlombongan data
title_full_unstemmed Pemodelan rekomendasi halaman web berasaskan teknik perlombongan data
title_short Pemodelan rekomendasi halaman web berasaskan teknik perlombongan data
title_sort pemodelan rekomendasi halaman web berasaskan teknik perlombongan data
topic QA75 Electronic computers. Computer science
url http://eprints.utm.my/4291/
http://eprints.utm.my/4291/1/MohdHanafiAhmadHijaziMFSKSM2005.pdf