The study of probability model for compound similarity searching

Information Retrieval or IR system main task is to retrieve relevant documents according to the users query. One of IR most popular retrieval model is the Vector Space Model. This model assumes relevance based on similarity, which is defined as the distance between query and document in the concept...

Full description

Bibliographic Details
Main Authors: Salim, Naomie, Abd. Wahid, Mohd. Taib, Alwee, Razana, Dollah @ Md. Zain, Rozilawati
Format: Monograph
Language:English
Published: Faculty of Computer Science and Information System 2006
Subjects:
Online Access:http://eprints.utm.my/4267/
http://eprints.utm.my/4267/1/75207.pdf
_version_ 1848890758574112768
author Salim, Naomie
Abd. Wahid, Mohd. Taib
Alwee, Razana
Dollah @ Md. Zain, Rozilawati
author_facet Salim, Naomie
Abd. Wahid, Mohd. Taib
Alwee, Razana
Dollah @ Md. Zain, Rozilawati
author_sort Salim, Naomie
building UTeM Institutional Repository
collection Online Access
description Information Retrieval or IR system main task is to retrieve relevant documents according to the users query. One of IR most popular retrieval model is the Vector Space Model. This model assumes relevance based on similarity, which is defined as the distance between query and document in the concept space. All currently existing chemical compound database systems have adapt the vector space model to calculate the similarity of a database entry to a query compound. However, it assumes that fragments represented by the bits are independent of one another, which is not necessarily true. Hence, the possibility of applying another IR model is explored, which is the Probabilistic Model, for chemical compound searching. This model estimates the probabilities of a chemical structure to have the same bioactivity as a target compound. It is envisioned that by ranking chemical structures in decreasing order of their probability of relevance to the query structure, the effectiveness of a molecular similarity searching system can be increased. Both fragment dependencies and independencies assumption are taken into consideration in achieving improvement towards compound similarity searching system. After conducting a series of simulated similarity searching, it is concluded that PM approaches really did perform better than the existing similarity searching. It gave better result in all evaluation criteria to confirm this statement. In terms of which probability model performs better, the BD model shown improvement over the BIR model.
first_indexed 2025-11-15T20:47:10Z
format Monograph
id utm-4267
institution Universiti Teknologi Malaysia
institution_category Local University
language English
last_indexed 2025-11-15T20:47:10Z
publishDate 2006
publisher Faculty of Computer Science and Information System
recordtype eprints
repository_type Digital Repository
spelling utm-42672017-08-07T01:31:41Z http://eprints.utm.my/4267/ The study of probability model for compound similarity searching Salim, Naomie Abd. Wahid, Mohd. Taib Alwee, Razana Dollah @ Md. Zain, Rozilawati QA75 Electronic computers. Computer science Information Retrieval or IR system main task is to retrieve relevant documents according to the users query. One of IR most popular retrieval model is the Vector Space Model. This model assumes relevance based on similarity, which is defined as the distance between query and document in the concept space. All currently existing chemical compound database systems have adapt the vector space model to calculate the similarity of a database entry to a query compound. However, it assumes that fragments represented by the bits are independent of one another, which is not necessarily true. Hence, the possibility of applying another IR model is explored, which is the Probabilistic Model, for chemical compound searching. This model estimates the probabilities of a chemical structure to have the same bioactivity as a target compound. It is envisioned that by ranking chemical structures in decreasing order of their probability of relevance to the query structure, the effectiveness of a molecular similarity searching system can be increased. Both fragment dependencies and independencies assumption are taken into consideration in achieving improvement towards compound similarity searching system. After conducting a series of simulated similarity searching, it is concluded that PM approaches really did perform better than the existing similarity searching. It gave better result in all evaluation criteria to confirm this statement. In terms of which probability model performs better, the BD model shown improvement over the BIR model. Faculty of Computer Science and Information System 2006-09-30 Monograph NonPeerReviewed application/pdf en http://eprints.utm.my/4267/1/75207.pdf Salim, Naomie and Abd. Wahid, Mohd. Taib and Alwee, Razana and Dollah @ Md. Zain, Rozilawati (2006) The study of probability model for compound similarity searching. Project Report. Faculty of Computer Science and Information System, Skudai, Johor. (Unpublished)
spellingShingle QA75 Electronic computers. Computer science
Salim, Naomie
Abd. Wahid, Mohd. Taib
Alwee, Razana
Dollah @ Md. Zain, Rozilawati
The study of probability model for compound similarity searching
title The study of probability model for compound similarity searching
title_full The study of probability model for compound similarity searching
title_fullStr The study of probability model for compound similarity searching
title_full_unstemmed The study of probability model for compound similarity searching
title_short The study of probability model for compound similarity searching
title_sort study of probability model for compound similarity searching
topic QA75 Electronic computers. Computer science
url http://eprints.utm.my/4267/
http://eprints.utm.my/4267/1/75207.pdf