Perbandingan penggunaan algoritma Krzyzak dengan algoritma rambatan balik piawai dalam domain peramalan

The purpose of this study is to compare the performance of neural network using Krzyzak algorithm and standard back propagation algorithm in forecasting domain. To implement this study a timber data set, which represents a non-seasonal time series data, is used. The performance is measured based on...

Full description

Bibliographic Details
Main Authors: Alwee, Razana, Sallehuddin, Roselina, Shamsuddin, Siti Mariyam
Format: Article
Published: Universiti Utara Malaysia 2004
Subjects:
Online Access:http://eprints.utm.my/3432/
_version_ 1848890569699360768
author Alwee, Razana
Sallehuddin, Roselina
Shamsuddin, Siti Mariyam
author_facet Alwee, Razana
Sallehuddin, Roselina
Shamsuddin, Siti Mariyam
author_sort Alwee, Razana
building UTeM Institutional Repository
collection Online Access
description The purpose of this study is to compare the performance of neural network using Krzyzak algorithm and standard back propagation algorithm in forecasting domain. To implement this study a timber data set, which represents a non-seasonal time series data, is used. The performance is measured based on the accuracies, which is, quantified by root mean square error and learning speed for convergence. The results show that by using a small value of learning rate, Krzyzak algorithm is better than standard back propagation algorithm for medium and long term forecasting.
first_indexed 2025-11-15T20:44:10Z
format Article
id utm-3432
institution Universiti Teknologi Malaysia
institution_category Local University
last_indexed 2025-11-15T20:44:10Z
publishDate 2004
publisher Universiti Utara Malaysia
recordtype eprints
repository_type Digital Repository
spelling utm-34322018-03-07T20:52:14Z http://eprints.utm.my/3432/ Perbandingan penggunaan algoritma Krzyzak dengan algoritma rambatan balik piawai dalam domain peramalan Alwee, Razana Sallehuddin, Roselina Shamsuddin, Siti Mariyam QA Mathematics The purpose of this study is to compare the performance of neural network using Krzyzak algorithm and standard back propagation algorithm in forecasting domain. To implement this study a timber data set, which represents a non-seasonal time series data, is used. The performance is measured based on the accuracies, which is, quantified by root mean square error and learning speed for convergence. The results show that by using a small value of learning rate, Krzyzak algorithm is better than standard back propagation algorithm for medium and long term forecasting. Universiti Utara Malaysia 2004-02 Article PeerReviewed Alwee, Razana and Sallehuddin, Roselina and Shamsuddin, Siti Mariyam (2004) Perbandingan penggunaan algoritma Krzyzak dengan algoritma rambatan balik piawai dalam domain peramalan. International Journal of Management Studies, 11 . pp. 171-183. http://repo.uum.edu.my/272/
spellingShingle QA Mathematics
Alwee, Razana
Sallehuddin, Roselina
Shamsuddin, Siti Mariyam
Perbandingan penggunaan algoritma Krzyzak dengan algoritma rambatan balik piawai dalam domain peramalan
title Perbandingan penggunaan algoritma Krzyzak dengan algoritma rambatan balik piawai dalam domain peramalan
title_full Perbandingan penggunaan algoritma Krzyzak dengan algoritma rambatan balik piawai dalam domain peramalan
title_fullStr Perbandingan penggunaan algoritma Krzyzak dengan algoritma rambatan balik piawai dalam domain peramalan
title_full_unstemmed Perbandingan penggunaan algoritma Krzyzak dengan algoritma rambatan balik piawai dalam domain peramalan
title_short Perbandingan penggunaan algoritma Krzyzak dengan algoritma rambatan balik piawai dalam domain peramalan
title_sort perbandingan penggunaan algoritma krzyzak dengan algoritma rambatan balik piawai dalam domain peramalan
topic QA Mathematics
url http://eprints.utm.my/3432/
http://eprints.utm.my/3432/