Automatic clustering of generalized regression neural network by similarity index based fuzzy c-means clustering

In general regression neural networks (GRNN), one drawback is that the number of training vectors is proportional to the number of hidden nodes, thus a large number of training vectors produce a larger architecture, which is a major disadvantage for many applications. In this paper we proposed an ef...

Full description

Bibliographic Details
Main Authors: Husain, Hafizah, Khalid, Marzuki, Yusof, Rubiyah
Format: Article
Language:English
Published: 2004
Subjects:
Online Access:http://eprints.utm.my/2120/
http://eprints.utm.my/2120/2/Husain2004_AutomaticClusteringOfGeneralizedRegression.pdf
_version_ 1848890291263635456
author Husain, Hafizah
Khalid, Marzuki
Yusof, Rubiyah
author_facet Husain, Hafizah
Khalid, Marzuki
Yusof, Rubiyah
author_sort Husain, Hafizah
building UTeM Institutional Repository
collection Online Access
description In general regression neural networks (GRNN), one drawback is that the number of training vectors is proportional to the number of hidden nodes, thus a large number of training vectors produce a larger architecture, which is a major disadvantage for many applications. In this paper we proposed an efficient clustering technique referred to as 'similarity index fuzzy c-means clustering'. This technique uses the conventional fuzzy c-means clustering preceded by a technique based on similarity indexing to automatically cluster input data which are relevant to the system. The technique employs a one-pass similarity measures on the data to calculate the similarity index. This index indicates the degree of similarity in which data is clustered. Similar data then undergoes fuzzy c-means iterative process to determine their cluster centers. We applied the technique for system identification and modeling and found the results to be encouraging and efficient. This algorithm offers better performance than conventional algorithm which using energy only. The vocabulary for the experiment includes English digit from 1 to 9. These experimental results were conducted by 360 utterances from a male speaker. Experimental results show that the accuracy of the algorithm is quite acceptable.
first_indexed 2025-11-15T20:39:44Z
format Article
id utm-2120
institution Universiti Teknologi Malaysia
institution_category Local University
language English
last_indexed 2025-11-15T20:39:44Z
publishDate 2004
recordtype eprints
repository_type Digital Repository
spelling utm-21202017-03-09T06:52:00Z http://eprints.utm.my/2120/ Automatic clustering of generalized regression neural network by similarity index based fuzzy c-means clustering Husain, Hafizah Khalid, Marzuki Yusof, Rubiyah TK Electrical engineering. Electronics Nuclear engineering In general regression neural networks (GRNN), one drawback is that the number of training vectors is proportional to the number of hidden nodes, thus a large number of training vectors produce a larger architecture, which is a major disadvantage for many applications. In this paper we proposed an efficient clustering technique referred to as 'similarity index fuzzy c-means clustering'. This technique uses the conventional fuzzy c-means clustering preceded by a technique based on similarity indexing to automatically cluster input data which are relevant to the system. The technique employs a one-pass similarity measures on the data to calculate the similarity index. This index indicates the degree of similarity in which data is clustered. Similar data then undergoes fuzzy c-means iterative process to determine their cluster centers. We applied the technique for system identification and modeling and found the results to be encouraging and efficient. This algorithm offers better performance than conventional algorithm which using energy only. The vocabulary for the experiment includes English digit from 1 to 9. These experimental results were conducted by 360 utterances from a male speaker. Experimental results show that the accuracy of the algorithm is quite acceptable. 2004 Article PeerReviewed application/pdf en http://eprints.utm.my/2120/2/Husain2004_AutomaticClusteringOfGeneralizedRegression.pdf Husain, Hafizah and Khalid, Marzuki and Yusof, Rubiyah (2004) Automatic clustering of generalized regression neural network by similarity index based fuzzy c-means clustering. IEEE Region 10 Conference TENCON 2004., Vol. 2 . 302-305 . http://dx.doi.org/10.1109/TENCON.2004.1414591
spellingShingle TK Electrical engineering. Electronics Nuclear engineering
Husain, Hafizah
Khalid, Marzuki
Yusof, Rubiyah
Automatic clustering of generalized regression neural network by similarity index based fuzzy c-means clustering
title Automatic clustering of generalized regression neural network by similarity index based fuzzy c-means clustering
title_full Automatic clustering of generalized regression neural network by similarity index based fuzzy c-means clustering
title_fullStr Automatic clustering of generalized regression neural network by similarity index based fuzzy c-means clustering
title_full_unstemmed Automatic clustering of generalized regression neural network by similarity index based fuzzy c-means clustering
title_short Automatic clustering of generalized regression neural network by similarity index based fuzzy c-means clustering
title_sort automatic clustering of generalized regression neural network by similarity index based fuzzy c-means clustering
topic TK Electrical engineering. Electronics Nuclear engineering
url http://eprints.utm.my/2120/
http://eprints.utm.my/2120/
http://eprints.utm.my/2120/2/Husain2004_AutomaticClusteringOfGeneralizedRegression.pdf