Real-time divisible load theory: a perspective

Current real-time application systems demand complex functionality and are increasingly coming to be implemented upon multiprocessor platforms, with complex synchronization, data-sharing and parallelism requirements. However, the formal models for representing real-time workloads have traditionally...

Full description

Bibliographic Details
Main Authors: Chuprat, Suriayati, Salleh, Shaharuddin, Goddard, Steve
Format: Conference or Workshop Item
Published: 2009
Subjects:
Online Access:http://eprints.utm.my/10038/
Description
Summary:Current real-time application systems demand complex functionality and are increasingly coming to be implemented upon multiprocessor platforms, with complex synchronization, data-sharing and parallelism requirements. However, the formal models for representing real-time workloads have traditionally been designed in the context of uniprocessor environments; hence, they are often not able to accurately represent relevant features of multiprocessor real-time systems. Researchers have recently addressed this shortcoming by applying workload models from Divisible Load Theory (DLT) to real-time systems. The resulting theory, referred to as Real-time Divisible Load Theory (RT-DLT), holds great promise for modeling an emergent class of massively parallel real-time workloads. However, the theory needs strong formal foundations before it can be widely used for the design and analysis of real-time systems. In this paper, we briefly describe our current findings on RT-DLT and ongoing research efforts at extending this work to develop such formal foundations.