A Nested Monte Carlo Simulation Model for Enhancing Dynamic Air Pollution Risk Assessment
The risk assessment of air pollution is an essential matter in the area of air quality computing. It provides useful information supporting air quality (AQ) measurement and pollution control. The outcomes of the evaluation have societal and technical influences on people and decision-makers. The e...
| Main Authors: | , , , , , |
|---|---|
| Format: | Article |
| Language: | English English |
| Published: |
2022
|
| Subjects: | |
| Online Access: | http://eprints.uthm.edu.my/8568/ http://eprints.uthm.edu.my/8568/1/J15751_471cd52599a047cc97a48c215f50359a.pdf http://eprints.uthm.edu.my/8568/2/J15751_471cd52599a047cc97a48c215f50359a.pdf |
| _version_ | 1848889436354379776 |
|---|---|
| author | Hamid Hassan, Mustafa Mostafa, Salama A. Baharum, Zirawani Mustapha, Aida Saringat, Mohd Zainuri Afyenni, Rita |
| author_facet | Hamid Hassan, Mustafa Mostafa, Salama A. Baharum, Zirawani Mustapha, Aida Saringat, Mohd Zainuri Afyenni, Rita |
| author_sort | Hamid Hassan, Mustafa |
| building | UTHM Institutional Repository |
| collection | Online Access |
| description | The risk assessment of air pollution is an essential matter in the area of air quality computing. It provides useful information
supporting air quality (AQ) measurement and pollution control. The outcomes of the evaluation have societal and technical influences
on people and decision-makers. The existing air pollution risk assessment employs different qualitative and quantitative methods. This study aims to develop an AQ-risk model based on the Nested Monte Carlo Simulation (NMCS) and concentrations of several air
pollutant parameters for forecasting daily AQ in the atmosphere. The main idea of NMCS lies in two main parts, which are the Outer
and Inner parts. The Outer part interacts with the data sources and extracts a proper sampling from vast data. It then generates a
scenario based on the data samples. On the other hand, the Inner part handles the assessment of the processed risk from each scenario and estimates future risk. The AQ-risk model is tested and evaluated using real data sources representing crucial pollution. The data is collected from an Italian city over a period of one year. The performance of the proposed model is evaluated based on statistical indices, coefficient of determination (R2), and mean square error (MSE). R2 measures the prediction ability in the testing stage for both parameters, resulting in 0.9462 and 0.9073 prediction accuracy. Meanwhile, MSE produced average results of 9.7 and 10.3, denoting that the AQ-risk model provides a considerably high prediction accuracy. |
| first_indexed | 2025-11-15T20:26:09Z |
| format | Article |
| id | uthm-8568 |
| institution | Universiti Tun Hussein Onn Malaysia |
| institution_category | Local University |
| language | English English |
| last_indexed | 2025-11-15T20:26:09Z |
| publishDate | 2022 |
| recordtype | eprints |
| repository_type | Digital Repository |
| spelling | uthm-85682023-04-11T03:20:18Z http://eprints.uthm.edu.my/8568/ A Nested Monte Carlo Simulation Model for Enhancing Dynamic Air Pollution Risk Assessment Hamid Hassan, Mustafa Mostafa, Salama A. Baharum, Zirawani Mustapha, Aida Saringat, Mohd Zainuri Afyenni, Rita TD Environmental technology. Sanitary engineering The risk assessment of air pollution is an essential matter in the area of air quality computing. It provides useful information supporting air quality (AQ) measurement and pollution control. The outcomes of the evaluation have societal and technical influences on people and decision-makers. The existing air pollution risk assessment employs different qualitative and quantitative methods. This study aims to develop an AQ-risk model based on the Nested Monte Carlo Simulation (NMCS) and concentrations of several air pollutant parameters for forecasting daily AQ in the atmosphere. The main idea of NMCS lies in two main parts, which are the Outer and Inner parts. The Outer part interacts with the data sources and extracts a proper sampling from vast data. It then generates a scenario based on the data samples. On the other hand, the Inner part handles the assessment of the processed risk from each scenario and estimates future risk. The AQ-risk model is tested and evaluated using real data sources representing crucial pollution. The data is collected from an Italian city over a period of one year. The performance of the proposed model is evaluated based on statistical indices, coefficient of determination (R2), and mean square error (MSE). R2 measures the prediction ability in the testing stage for both parameters, resulting in 0.9462 and 0.9073 prediction accuracy. Meanwhile, MSE produced average results of 9.7 and 10.3, denoting that the AQ-risk model provides a considerably high prediction accuracy. 2022 Article PeerReviewed text en http://eprints.uthm.edu.my/8568/1/J15751_471cd52599a047cc97a48c215f50359a.pdf text en http://eprints.uthm.edu.my/8568/2/J15751_471cd52599a047cc97a48c215f50359a.pdf Hamid Hassan, Mustafa and Mostafa, Salama A. and Baharum, Zirawani and Mustapha, Aida and Saringat, Mohd Zainuri and Afyenni, Rita (2022) A Nested Monte Carlo Simulation Model for Enhancing Dynamic Air Pollution Risk Assessment. INTERNATIONAL JOURNAL ON INFORMATICS VISUALIZATION, 6 (4). pp. 1-7. ISSN 876-882 |
| spellingShingle | TD Environmental technology. Sanitary engineering Hamid Hassan, Mustafa Mostafa, Salama A. Baharum, Zirawani Mustapha, Aida Saringat, Mohd Zainuri Afyenni, Rita A Nested Monte Carlo Simulation Model for Enhancing Dynamic Air Pollution Risk Assessment |
| title | A Nested Monte Carlo Simulation Model for Enhancing Dynamic Air
Pollution Risk Assessment |
| title_full | A Nested Monte Carlo Simulation Model for Enhancing Dynamic Air
Pollution Risk Assessment |
| title_fullStr | A Nested Monte Carlo Simulation Model for Enhancing Dynamic Air
Pollution Risk Assessment |
| title_full_unstemmed | A Nested Monte Carlo Simulation Model for Enhancing Dynamic Air
Pollution Risk Assessment |
| title_short | A Nested Monte Carlo Simulation Model for Enhancing Dynamic Air
Pollution Risk Assessment |
| title_sort | nested monte carlo simulation model for enhancing dynamic air
pollution risk assessment |
| topic | TD Environmental technology. Sanitary engineering |
| url | http://eprints.uthm.edu.my/8568/ http://eprints.uthm.edu.my/8568/1/J15751_471cd52599a047cc97a48c215f50359a.pdf http://eprints.uthm.edu.my/8568/2/J15751_471cd52599a047cc97a48c215f50359a.pdf |