UAV-based weed detection in Chinese cabbage using deep learning

Weeds are unwanted plants on agricultural soil. They always competing for sunlight, nutrient, space and water with economic crops. Uncontrolled weed growth can cause both significant economic and ecological loss. Hence, weeds should be efficiently differentiated from the crops for the smart spraying...

Full description

Bibliographic Details
Main Authors: Ong, Pauline, Soon Teo, Kiat, Sia, Chee Kiong
Format: Article
Language:English
Published: Elsevier 2023
Subjects:
Online Access:http://eprints.uthm.edu.my/8538/
http://eprints.uthm.edu.my/8538/1/J15714_2d945dfceb4884e99046ed1226b05425.pdf
_version_ 1848889427260080128
author Ong, Pauline
Soon Teo, Kiat
Sia, Chee Kiong
author_facet Ong, Pauline
Soon Teo, Kiat
Sia, Chee Kiong
author_sort Ong, Pauline
building UTHM Institutional Repository
collection Online Access
description Weeds are unwanted plants on agricultural soil. They always competing for sunlight, nutrient, space and water with economic crops. Uncontrolled weed growth can cause both significant economic and ecological loss. Hence, weeds should be efficiently differentiated from the crops for the smart spraying solution. In this study, the Convolutional Neural Network (CNN) was used to perform weed detection amongst the commercial crop of Chinese cabbage, using the acquired images by Unmanned Aerial Vehicles. The acquired images were preprocessed and subsequently segmented into the crop, soil, and weed classes using the Simple Linear Iterative Clustering Superpixel algorithm. The segmented images were then used to construct the CNN-based classifier. The Random Forest (RF) was applied to compare with the performance of CNN. The results showed that the CNN achieved a higher overall accuracy of 92.41% than the 86.18% attained by RF
first_indexed 2025-11-15T20:26:00Z
format Article
id uthm-8538
institution Universiti Tun Hussein Onn Malaysia
institution_category Local University
language English
last_indexed 2025-11-15T20:26:00Z
publishDate 2023
publisher Elsevier
recordtype eprints
repository_type Digital Repository
spelling uthm-85382023-04-05T03:24:49Z http://eprints.uthm.edu.my/8538/ UAV-based weed detection in Chinese cabbage using deep learning Ong, Pauline Soon Teo, Kiat Sia, Chee Kiong TJ210.2-211.47 Mechanical devices and figures. Automata. Ingenious mechanisms. Robots (General) Weeds are unwanted plants on agricultural soil. They always competing for sunlight, nutrient, space and water with economic crops. Uncontrolled weed growth can cause both significant economic and ecological loss. Hence, weeds should be efficiently differentiated from the crops for the smart spraying solution. In this study, the Convolutional Neural Network (CNN) was used to perform weed detection amongst the commercial crop of Chinese cabbage, using the acquired images by Unmanned Aerial Vehicles. The acquired images were preprocessed and subsequently segmented into the crop, soil, and weed classes using the Simple Linear Iterative Clustering Superpixel algorithm. The segmented images were then used to construct the CNN-based classifier. The Random Forest (RF) was applied to compare with the performance of CNN. The results showed that the CNN achieved a higher overall accuracy of 92.41% than the 86.18% attained by RF Elsevier 2023 Article PeerReviewed text en http://eprints.uthm.edu.my/8538/1/J15714_2d945dfceb4884e99046ed1226b05425.pdf Ong, Pauline and Soon Teo, Kiat and Sia, Chee Kiong (2023) UAV-based weed detection in Chinese cabbage using deep learning. Smart Agricultural Technology, 4. pp. 1-8. ISSN 100181 https://doi.org/10.1016/j.atech.2023.100181
spellingShingle TJ210.2-211.47 Mechanical devices and figures. Automata. Ingenious mechanisms. Robots (General)
Ong, Pauline
Soon Teo, Kiat
Sia, Chee Kiong
UAV-based weed detection in Chinese cabbage using deep learning
title UAV-based weed detection in Chinese cabbage using deep learning
title_full UAV-based weed detection in Chinese cabbage using deep learning
title_fullStr UAV-based weed detection in Chinese cabbage using deep learning
title_full_unstemmed UAV-based weed detection in Chinese cabbage using deep learning
title_short UAV-based weed detection in Chinese cabbage using deep learning
title_sort uav-based weed detection in chinese cabbage using deep learning
topic TJ210.2-211.47 Mechanical devices and figures. Automata. Ingenious mechanisms. Robots (General)
url http://eprints.uthm.edu.my/8538/
http://eprints.uthm.edu.my/8538/
http://eprints.uthm.edu.my/8538/1/J15714_2d945dfceb4884e99046ed1226b05425.pdf