Implementation of haar cascade classifier and eye aspect ratio for driver drowsiness detection using raspberry pi

Driver’s drowsiness is one of the leading contributing factors to the increasing accidents statistics in Malaysia. Therefore, the design and development of driver drowsiness detection based on image processing using Raspberry Pi camera module sensor interfacing with Raspberry Pi 3 board are proposed...

Full description

Bibliographic Details
Main Authors: Kamarudin, Nora, Jumadi, Nur Anida
Format: Article
Language:English
Published: HRPub 2019
Subjects:
Online Access:http://eprints.uthm.edu.my/689/
http://eprints.uthm.edu.my/689/1/DNJ9695_ae303c7c3c738e2a7d0a6afcce88a47b.pdf
_version_ 1848887265820934144
author Kamarudin, Nora
Jumadi, Nur Anida
author_facet Kamarudin, Nora
Jumadi, Nur Anida
author_sort Kamarudin, Nora
building UTHM Institutional Repository
collection Online Access
description Driver’s drowsiness is one of the leading contributing factors to the increasing accidents statistics in Malaysia. Therefore, the design and development of driver drowsiness detection based on image processing using Raspberry Pi camera module sensor interfacing with Raspberry Pi 3 board are proposed in this paper. To achieve the aim of the research, the Haar Cascade Classifier algorithm is implemented for eyes and face detection whereas for eyes blink (open and close) detection, the Eye Aspect Ratio (EAR) algorithm is employed. From several experiments conducted on six recruited subjects, the findings revealed that the accuracy of Haar Cascade classifier to detect the eyes and faces was subjected to correct sitting position (head must facing to the camera) as well as the eyes must not be covered with glasses or shades. Meanwhile, the range of average EAR value detected by the system was between 0.141 (eyes closed) and 0.339 (eyes opened). In conclusion, the image processing-based Haar Cascade and EAR algorithms utilized on Raspberry Pi platform have been successfully executed. For future improvement, the current board can be replaced with Raspberry Pi Touch Screen to minimize the hardware setup and the physiological based analysis using alcohol and heart rate sensors can be added.
first_indexed 2025-11-15T19:51:39Z
format Article
id uthm-689
institution Universiti Tun Hussein Onn Malaysia
institution_category Local University
language English
last_indexed 2025-11-15T19:51:39Z
publishDate 2019
publisher HRPub
recordtype eprints
repository_type Digital Repository
spelling uthm-6892021-10-17T05:02:49Z http://eprints.uthm.edu.my/689/ Implementation of haar cascade classifier and eye aspect ratio for driver drowsiness detection using raspberry pi Kamarudin, Nora Jumadi, Nur Anida QA76 Computer software Driver’s drowsiness is one of the leading contributing factors to the increasing accidents statistics in Malaysia. Therefore, the design and development of driver drowsiness detection based on image processing using Raspberry Pi camera module sensor interfacing with Raspberry Pi 3 board are proposed in this paper. To achieve the aim of the research, the Haar Cascade Classifier algorithm is implemented for eyes and face detection whereas for eyes blink (open and close) detection, the Eye Aspect Ratio (EAR) algorithm is employed. From several experiments conducted on six recruited subjects, the findings revealed that the accuracy of Haar Cascade classifier to detect the eyes and faces was subjected to correct sitting position (head must facing to the camera) as well as the eyes must not be covered with glasses or shades. Meanwhile, the range of average EAR value detected by the system was between 0.141 (eyes closed) and 0.339 (eyes opened). In conclusion, the image processing-based Haar Cascade and EAR algorithms utilized on Raspberry Pi platform have been successfully executed. For future improvement, the current board can be replaced with Raspberry Pi Touch Screen to minimize the hardware setup and the physiological based analysis using alcohol and heart rate sensors can be added. HRPub 2019 Article PeerReviewed text en http://eprints.uthm.edu.my/689/1/DNJ9695_ae303c7c3c738e2a7d0a6afcce88a47b.pdf Kamarudin, Nora and Jumadi, Nur Anida (2019) Implementation of haar cascade classifier and eye aspect ratio for driver drowsiness detection using raspberry pi. Universal Journal of Electrical and Electronic Engineering, 6 (5B). pp. 67-75. https://doi.org/10.13189/ujeee.2019.061609
spellingShingle QA76 Computer software
Kamarudin, Nora
Jumadi, Nur Anida
Implementation of haar cascade classifier and eye aspect ratio for driver drowsiness detection using raspberry pi
title Implementation of haar cascade classifier and eye aspect ratio for driver drowsiness detection using raspberry pi
title_full Implementation of haar cascade classifier and eye aspect ratio for driver drowsiness detection using raspberry pi
title_fullStr Implementation of haar cascade classifier and eye aspect ratio for driver drowsiness detection using raspberry pi
title_full_unstemmed Implementation of haar cascade classifier and eye aspect ratio for driver drowsiness detection using raspberry pi
title_short Implementation of haar cascade classifier and eye aspect ratio for driver drowsiness detection using raspberry pi
title_sort implementation of haar cascade classifier and eye aspect ratio for driver drowsiness detection using raspberry pi
topic QA76 Computer software
url http://eprints.uthm.edu.my/689/
http://eprints.uthm.edu.my/689/
http://eprints.uthm.edu.my/689/1/DNJ9695_ae303c7c3c738e2a7d0a6afcce88a47b.pdf