Geotechnical performance using alkaline activated fly ash for soil mixtures with and without polypropylene fibers

Soil stabilization is one of the well-known methods to treat problematic soils. Its advantages over soil replacement are that of low cost and fast implementation. Alkaline activation (geopolymerezation) of soft soils is a new technique that has been addressed recently to stabilize soft soils. Though...

Full description

Bibliographic Details
Main Author: Rajeb Elkhebu, Ahmed Giuma
Format: Thesis
Language:English
English
English
Published: 2018
Subjects:
Online Access:http://eprints.uthm.edu.my/149/
http://eprints.uthm.edu.my/149/1/24p%20AHMED%20GIUMA%20RAJEB%20ELKHEBU.pdf
http://eprints.uthm.edu.my/149/2/AHMED%20GIUMA%20RAJEB%20ELKHEBU%20COPYRIGHT%20DECLARATION.pdf
http://eprints.uthm.edu.my/149/3/AHMED%20GIUMA%20RAJEB%20ELKHEBU%20WATERMARK.pdf
_version_ 1848887109243371520
author Rajeb Elkhebu, Ahmed Giuma
author_facet Rajeb Elkhebu, Ahmed Giuma
author_sort Rajeb Elkhebu, Ahmed Giuma
building UTHM Institutional Repository
collection Online Access
description Soil stabilization is one of the well-known methods to treat problematic soils. Its advantages over soil replacement are that of low cost and fast implementation. Alkaline activation (geopolymerezation) of soft soils is a new technique that has been addressed recently to stabilize soft soils. Though it’s strengthening mechanism and final product in terms of stiffness and brittleness resembles that observed by cemented soils. In other words, the residual strength emerged when approaching failure is very low resulting in immediate damage of building structures. Therefore, the aforesaid shortcoming needs to be overcome particularly when horizontal displacement is present. In this regard, Potassium hydroxide was added to a mix of fly ash class F and polypropylene fibers to stabilize and reinforce Kaolin clay (S1) and marine clay (S2) respectively. The fly ash solid ratio was considered to be 10%, 20%, 30%, 40%, while polypropylene fiber proportions adapted for the study were 0.5%, 0.75%, 1% 1.25%. Compressive-, flexural- and indirect tensile tests as well as California bearing capacity (CBR)- & one dimensional consolidation tests were conducted. The compressive strength results of 28 days curing regime confirm the 40% fly ash mixture to contribute to the sharpest increase in compressive strength at 3680, 6980 kPa respectively. Though a sharp drop was observed. With the inclusion of polypropylene fibers, the mode of failure changed to a more ductile one resulting in peak strength values at 6450 kPa and 5834 kPa respectively. Besides, flexural and indirect tensile results were recorded to be 1555, 1770, 1833, 1819, 1541, 1777, 1545 and 1440 kPa for S1F40, S1FR0.75, S2F40 and S2FR0.75 respectively. In addition, the incorporation of fly ash and polypropylene fibers increased the CBR values of all pretreated mixtures indicating values of 51.2%, 69.8%, 48.1% and 59% for S1F40, S1FR0.75, S2F40 and S2FR0.75 respectively. Finally, the compression index and the preconsolidation pressure exhibited a substantial decrease and increase at 0.043, 0.076, 0.047, 0.104 and 900 kPa, 400 kPa, 500 kPa, 240 kPa for S1F40, S1FR0.75, S2F40 and S2FR0.75 respectively. It is to conclude, that the proposed new technique has a promising future to be used in soil stabilization domain where horizontal displacement is expected.
first_indexed 2025-11-15T19:49:09Z
format Thesis
id uthm-149
institution Universiti Tun Hussein Onn Malaysia
institution_category Local University
language English
English
English
last_indexed 2025-11-15T19:49:09Z
publishDate 2018
recordtype eprints
repository_type Digital Repository
spelling uthm-1492021-07-06T06:41:28Z http://eprints.uthm.edu.my/149/ Geotechnical performance using alkaline activated fly ash for soil mixtures with and without polypropylene fibers Rajeb Elkhebu, Ahmed Giuma TA703-712 Engineering geology. Rock mechanics. Soil mechanics. Soil stabilization is one of the well-known methods to treat problematic soils. Its advantages over soil replacement are that of low cost and fast implementation. Alkaline activation (geopolymerezation) of soft soils is a new technique that has been addressed recently to stabilize soft soils. Though it’s strengthening mechanism and final product in terms of stiffness and brittleness resembles that observed by cemented soils. In other words, the residual strength emerged when approaching failure is very low resulting in immediate damage of building structures. Therefore, the aforesaid shortcoming needs to be overcome particularly when horizontal displacement is present. In this regard, Potassium hydroxide was added to a mix of fly ash class F and polypropylene fibers to stabilize and reinforce Kaolin clay (S1) and marine clay (S2) respectively. The fly ash solid ratio was considered to be 10%, 20%, 30%, 40%, while polypropylene fiber proportions adapted for the study were 0.5%, 0.75%, 1% 1.25%. Compressive-, flexural- and indirect tensile tests as well as California bearing capacity (CBR)- & one dimensional consolidation tests were conducted. The compressive strength results of 28 days curing regime confirm the 40% fly ash mixture to contribute to the sharpest increase in compressive strength at 3680, 6980 kPa respectively. Though a sharp drop was observed. With the inclusion of polypropylene fibers, the mode of failure changed to a more ductile one resulting in peak strength values at 6450 kPa and 5834 kPa respectively. Besides, flexural and indirect tensile results were recorded to be 1555, 1770, 1833, 1819, 1541, 1777, 1545 and 1440 kPa for S1F40, S1FR0.75, S2F40 and S2FR0.75 respectively. In addition, the incorporation of fly ash and polypropylene fibers increased the CBR values of all pretreated mixtures indicating values of 51.2%, 69.8%, 48.1% and 59% for S1F40, S1FR0.75, S2F40 and S2FR0.75 respectively. Finally, the compression index and the preconsolidation pressure exhibited a substantial decrease and increase at 0.043, 0.076, 0.047, 0.104 and 900 kPa, 400 kPa, 500 kPa, 240 kPa for S1F40, S1FR0.75, S2F40 and S2FR0.75 respectively. It is to conclude, that the proposed new technique has a promising future to be used in soil stabilization domain where horizontal displacement is expected. 2018-10 Thesis NonPeerReviewed text en http://eprints.uthm.edu.my/149/1/24p%20AHMED%20GIUMA%20RAJEB%20ELKHEBU.pdf text en http://eprints.uthm.edu.my/149/2/AHMED%20GIUMA%20RAJEB%20ELKHEBU%20COPYRIGHT%20DECLARATION.pdf text en http://eprints.uthm.edu.my/149/3/AHMED%20GIUMA%20RAJEB%20ELKHEBU%20WATERMARK.pdf Rajeb Elkhebu, Ahmed Giuma (2018) Geotechnical performance using alkaline activated fly ash for soil mixtures with and without polypropylene fibers. Doctoral thesis, Universiti Tun Hussein Onn Malaysia.
spellingShingle TA703-712 Engineering geology. Rock mechanics. Soil mechanics.
Rajeb Elkhebu, Ahmed Giuma
Geotechnical performance using alkaline activated fly ash for soil mixtures with and without polypropylene fibers
title Geotechnical performance using alkaline activated fly ash for soil mixtures with and without polypropylene fibers
title_full Geotechnical performance using alkaline activated fly ash for soil mixtures with and without polypropylene fibers
title_fullStr Geotechnical performance using alkaline activated fly ash for soil mixtures with and without polypropylene fibers
title_full_unstemmed Geotechnical performance using alkaline activated fly ash for soil mixtures with and without polypropylene fibers
title_short Geotechnical performance using alkaline activated fly ash for soil mixtures with and without polypropylene fibers
title_sort geotechnical performance using alkaline activated fly ash for soil mixtures with and without polypropylene fibers
topic TA703-712 Engineering geology. Rock mechanics. Soil mechanics.
url http://eprints.uthm.edu.my/149/
http://eprints.uthm.edu.my/149/1/24p%20AHMED%20GIUMA%20RAJEB%20ELKHEBU.pdf
http://eprints.uthm.edu.my/149/2/AHMED%20GIUMA%20RAJEB%20ELKHEBU%20COPYRIGHT%20DECLARATION.pdf
http://eprints.uthm.edu.my/149/3/AHMED%20GIUMA%20RAJEB%20ELKHEBU%20WATERMARK.pdf