Gait pattern detection for amputated prosthetic using fuzzy algorithm

Conventional gait rehabilitation treatment does not provide quantitative and graphical information on abnormal gait kinematics, and the match of the intervention strategy to the underlying clinical presentation may be limited by clinical expertise and experience. Amputated patient with prosthetic le...

Full description

Bibliographic Details
Main Author: Abdullah, Ahmad Faisal
Format: Thesis
Language:English
English
English
Published: 2015
Subjects:
Online Access:http://eprints.uthm.edu.my/1280/
http://eprints.uthm.edu.my/1280/2/AHMAD%20FAISAL%20BIN%20ABDULLAH%20COPYRIGHT%20DECLARATION.pdf
http://eprints.uthm.edu.my/1280/1/24p%20AHMAD%20FAISAL%20BIN%20ABDULLAH.pdf
http://eprints.uthm.edu.my/1280/3/AHMAD%20FAISAL%20BIN%20ABDULLAH%20WATERMARK.pdf
_version_ 1848887422188781568
author Abdullah, Ahmad Faisal
author_facet Abdullah, Ahmad Faisal
author_sort Abdullah, Ahmad Faisal
building UTHM Institutional Repository
collection Online Access
description Conventional gait rehabilitation treatment does not provide quantitative and graphical information on abnormal gait kinematics, and the match of the intervention strategy to the underlying clinical presentation may be limited by clinical expertise and experience. Amputated patient with prosthetic leg suffered with gait deviation due to variety causes commonly alignment and fitting problem. Gait analysis using wearable sensors is an inexpensive, convenient, and efficient manner of providing useful information for multiple health-related applications. The work included in this project focuses on developing a system to measure the angular displacement of human joint of lower part with patients having this problem and then applying gait phase detection using intelligent algorithm. The developed prototype has three inertial measurement units (IMU) sensor to measure and quantify body gait on thigh, shank and foot. The data from specific placement sensor on body part was evaluated and process in Arduino and MATLAB via serial communication. IMU provides the orientation of two axes and from this, it determined elevated position of each joint by using well established trigonometry technique in board to generate displacement angle during walking. The data acquired from the motion tests was displayed graphically through GUI MATLAB. A fuzzy inference system (FIS) was implementing to improve precision of the detection of gait phase from obtained gait trajectories. The prototype and FIS system showed satisfactory performance and has potential to emerge as a tool in diagnosing and predicting the pace of the disease and a possible feedback system for rehabilitation of prosthetic patients.
first_indexed 2025-11-15T19:54:08Z
format Thesis
id uthm-1280
institution Universiti Tun Hussein Onn Malaysia
institution_category Local University
language English
English
English
last_indexed 2025-11-15T19:54:08Z
publishDate 2015
recordtype eprints
repository_type Digital Repository
spelling uthm-12802021-09-30T07:04:14Z http://eprints.uthm.edu.my/1280/ Gait pattern detection for amputated prosthetic using fuzzy algorithm Abdullah, Ahmad Faisal R856-857 Biomedical engineering. Electronics. Instrumentation Conventional gait rehabilitation treatment does not provide quantitative and graphical information on abnormal gait kinematics, and the match of the intervention strategy to the underlying clinical presentation may be limited by clinical expertise and experience. Amputated patient with prosthetic leg suffered with gait deviation due to variety causes commonly alignment and fitting problem. Gait analysis using wearable sensors is an inexpensive, convenient, and efficient manner of providing useful information for multiple health-related applications. The work included in this project focuses on developing a system to measure the angular displacement of human joint of lower part with patients having this problem and then applying gait phase detection using intelligent algorithm. The developed prototype has three inertial measurement units (IMU) sensor to measure and quantify body gait on thigh, shank and foot. The data from specific placement sensor on body part was evaluated and process in Arduino and MATLAB via serial communication. IMU provides the orientation of two axes and from this, it determined elevated position of each joint by using well established trigonometry technique in board to generate displacement angle during walking. The data acquired from the motion tests was displayed graphically through GUI MATLAB. A fuzzy inference system (FIS) was implementing to improve precision of the detection of gait phase from obtained gait trajectories. The prototype and FIS system showed satisfactory performance and has potential to emerge as a tool in diagnosing and predicting the pace of the disease and a possible feedback system for rehabilitation of prosthetic patients. 2015-01 Thesis NonPeerReviewed text en http://eprints.uthm.edu.my/1280/2/AHMAD%20FAISAL%20BIN%20ABDULLAH%20COPYRIGHT%20DECLARATION.pdf text en http://eprints.uthm.edu.my/1280/1/24p%20AHMAD%20FAISAL%20BIN%20ABDULLAH.pdf text en http://eprints.uthm.edu.my/1280/3/AHMAD%20FAISAL%20BIN%20ABDULLAH%20WATERMARK.pdf Abdullah, Ahmad Faisal (2015) Gait pattern detection for amputated prosthetic using fuzzy algorithm. Masters thesis, Universiti Tun Hussein Onn Malaysia.
spellingShingle R856-857 Biomedical engineering. Electronics. Instrumentation
Abdullah, Ahmad Faisal
Gait pattern detection for amputated prosthetic using fuzzy algorithm
title Gait pattern detection for amputated prosthetic using fuzzy algorithm
title_full Gait pattern detection for amputated prosthetic using fuzzy algorithm
title_fullStr Gait pattern detection for amputated prosthetic using fuzzy algorithm
title_full_unstemmed Gait pattern detection for amputated prosthetic using fuzzy algorithm
title_short Gait pattern detection for amputated prosthetic using fuzzy algorithm
title_sort gait pattern detection for amputated prosthetic using fuzzy algorithm
topic R856-857 Biomedical engineering. Electronics. Instrumentation
url http://eprints.uthm.edu.my/1280/
http://eprints.uthm.edu.my/1280/2/AHMAD%20FAISAL%20BIN%20ABDULLAH%20COPYRIGHT%20DECLARATION.pdf
http://eprints.uthm.edu.my/1280/1/24p%20AHMAD%20FAISAL%20BIN%20ABDULLAH.pdf
http://eprints.uthm.edu.my/1280/3/AHMAD%20FAISAL%20BIN%20ABDULLAH%20WATERMARK.pdf