Recognizing Patterns of Music Signals to Songs Classification Using Modified AIS-Based Classifier

Human capabilities of recognizing different type of music and grouping them into categories of genre are so remarkable that experts in music can perform such classification using their hearing senses and logical judgment. For decades now, the scientific community were involved in research to automat...

Full description

Bibliographic Details
Main Authors: Muda, N. A., Ahmad, S., Muda, A. K.
Format: Conference or Workshop Item
Language:English
Published: 2011
Subjects:
Online Access:http://eprints.utem.edu.my/id/eprint/46/
http://eprints.utem.edu.my/id/eprint/46/1/01800724_azilah.pdf
_version_ 1848886877897097216
author Muda, N. A.
Ahmad, S.
Muda, A. K.
author_facet Muda, N. A.
Ahmad, S.
Muda, A. K.
author_sort Muda, N. A.
building UTeM Institutional Repository
collection Online Access
description Human capabilities of recognizing different type of music and grouping them into categories of genre are so remarkable that experts in music can perform such classification using their hearing senses and logical judgment. For decades now, the scientific community were involved in research to automate the human process of recognizing genre of songs. These efforts would normally imitate the human method of recognizing the music by considering every essential component of the songs from artist voice, melody of the music through to the type of instruments used. As a result, various approaches or mechanisms are introduced and developed to automate the classification process. The results of these studies so far have been remarkable yet can still be improved. The aim of this research is to investigate Artificial Immune System (AIS) domain by focusing on the modified AIS-based classifier to solve this problem where the focuses are the censoring and monitoring modules. In this highlight, stages of music recognition are emphasized where feature extraction, feature selection, and feature classification processes are explained. Comparison of performances between proposed classifier and WEKA application is discussed.
first_indexed 2025-11-15T19:45:29Z
format Conference or Workshop Item
id utem-46
institution Universiti Teknikal Malaysia Melaka
institution_category Local University
language English
last_indexed 2025-11-15T19:45:29Z
publishDate 2011
recordtype eprints
repository_type Digital Repository
spelling utem-462015-05-28T02:16:35Z http://eprints.utem.edu.my/id/eprint/46/ Recognizing Patterns of Music Signals to Songs Classification Using Modified AIS-Based Classifier Muda, N. A. Ahmad, S. Muda, A. K. TA Engineering (General). Civil engineering (General) Human capabilities of recognizing different type of music and grouping them into categories of genre are so remarkable that experts in music can perform such classification using their hearing senses and logical judgment. For decades now, the scientific community were involved in research to automate the human process of recognizing genre of songs. These efforts would normally imitate the human method of recognizing the music by considering every essential component of the songs from artist voice, melody of the music through to the type of instruments used. As a result, various approaches or mechanisms are introduced and developed to automate the classification process. The results of these studies so far have been remarkable yet can still be improved. The aim of this research is to investigate Artificial Immune System (AIS) domain by focusing on the modified AIS-based classifier to solve this problem where the focuses are the censoring and monitoring modules. In this highlight, stages of music recognition are emphasized where feature extraction, feature selection, and feature classification processes are explained. Comparison of performances between proposed classifier and WEKA application is discussed. 2011 Conference or Workshop Item PeerReviewed application/pdf en http://eprints.utem.edu.my/id/eprint/46/1/01800724_azilah.pdf Muda, N. A. and Ahmad, S. and Muda, A. K. (2011) Recognizing Patterns of Music Signals to Songs Classification Using Modified AIS-Based Classifier. In: Springer - Software Engineering and Computer Systems ICSECS 2011, 27 - 29 June, 2011, Pahang, Malaysia.
spellingShingle TA Engineering (General). Civil engineering (General)
Muda, N. A.
Ahmad, S.
Muda, A. K.
Recognizing Patterns of Music Signals to Songs Classification Using Modified AIS-Based Classifier
title Recognizing Patterns of Music Signals to Songs Classification Using Modified AIS-Based Classifier
title_full Recognizing Patterns of Music Signals to Songs Classification Using Modified AIS-Based Classifier
title_fullStr Recognizing Patterns of Music Signals to Songs Classification Using Modified AIS-Based Classifier
title_full_unstemmed Recognizing Patterns of Music Signals to Songs Classification Using Modified AIS-Based Classifier
title_short Recognizing Patterns of Music Signals to Songs Classification Using Modified AIS-Based Classifier
title_sort recognizing patterns of music signals to songs classification using modified ais-based classifier
topic TA Engineering (General). Civil engineering (General)
url http://eprints.utem.edu.my/id/eprint/46/
http://eprints.utem.edu.my/id/eprint/46/1/01800724_azilah.pdf