Mathematical function optimization using AIS antibody remainder method
Artificial immune system (AIS) is one of the metaheuristics used for solving combinatorial optimization problems. In AIS, clonal selection algorithm (CSA) has good global searching capability. However, the CSA convergence and accuracy can be improved further because the hypermutation in CSA itself c...
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
International Association of Computer Science and Information Technology Press (IACSIT)
2011
|
| Subjects: | |
| Online Access: | http://eprints.utem.edu.my/id/eprint/3932/ http://eprints.utem.edu.my/id/eprint/3932/1/03-C00778-001.pdf |
| _version_ | 1848886974257037312 |
|---|---|
| author | Yap, David F. W. Koh, S. P. Tiong, S. K. |
| author_facet | Yap, David F. W. Koh, S. P. Tiong, S. K. |
| author_sort | Yap, David F. W. |
| building | UTeM Institutional Repository |
| collection | Online Access |
| description | Artificial immune system (AIS) is one of the metaheuristics used for solving combinatorial optimization problems. In AIS, clonal selection algorithm (CSA) has good global searching capability. However, the CSA convergence and accuracy can be improved further because the hypermutation in CSA itself cannot always guarantee a better solution. Alternatively, Genetic Algorithms (GAs) and Particle Swarm Optimization (PSO) have been used efficiently in solving complex optimization problems, but they have a tendency to converge prematurely. In this study, the CSA is modified using the best solutions for each exposure (iteration) namely Single Best Remainder (SBR) - CSA. The results show that the proposed algorithm is able to improve the conventional CSA in terms of accuracy and stability for single and multi objective functions. |
| first_indexed | 2025-11-15T19:47:01Z |
| format | Article |
| id | utem-3932 |
| institution | Universiti Teknikal Malaysia Melaka |
| institution_category | Local University |
| language | English |
| last_indexed | 2025-11-15T19:47:01Z |
| publishDate | 2011 |
| publisher | International Association of Computer Science and Information Technology Press (IACSIT) |
| recordtype | eprints |
| repository_type | Digital Repository |
| spelling | utem-39322021-12-21T16:02:01Z http://eprints.utem.edu.my/id/eprint/3932/ Mathematical function optimization using AIS antibody remainder method Yap, David F. W. Koh, S. P. Tiong, S. K. TA Engineering (General). Civil engineering (General) Artificial immune system (AIS) is one of the metaheuristics used for solving combinatorial optimization problems. In AIS, clonal selection algorithm (CSA) has good global searching capability. However, the CSA convergence and accuracy can be improved further because the hypermutation in CSA itself cannot always guarantee a better solution. Alternatively, Genetic Algorithms (GAs) and Particle Swarm Optimization (PSO) have been used efficiently in solving complex optimization problems, but they have a tendency to converge prematurely. In this study, the CSA is modified using the best solutions for each exposure (iteration) namely Single Best Remainder (SBR) - CSA. The results show that the proposed algorithm is able to improve the conventional CSA in terms of accuracy and stability for single and multi objective functions. International Association of Computer Science and Information Technology Press (IACSIT) 2011 Article PeerReviewed application/pdf en http://eprints.utem.edu.my/id/eprint/3932/1/03-C00778-001.pdf Yap, David F. W. and Koh, S. P. and Tiong, S. K. (2011) Mathematical function optimization using AIS antibody remainder method. International Journal of Machine Learning and Computing, 1 (1). pp. 13-19. ISSN 2010-3700 http://ijmlc.org/ |
| spellingShingle | TA Engineering (General). Civil engineering (General) Yap, David F. W. Koh, S. P. Tiong, S. K. Mathematical function optimization using AIS antibody remainder method |
| title | Mathematical function optimization using AIS antibody remainder method |
| title_full | Mathematical function optimization using AIS antibody remainder method |
| title_fullStr | Mathematical function optimization using AIS antibody remainder method |
| title_full_unstemmed | Mathematical function optimization using AIS antibody remainder method |
| title_short | Mathematical function optimization using AIS antibody remainder method |
| title_sort | mathematical function optimization using ais antibody remainder method |
| topic | TA Engineering (General). Civil engineering (General) |
| url | http://eprints.utem.edu.my/id/eprint/3932/ http://eprints.utem.edu.my/id/eprint/3932/ http://eprints.utem.edu.my/id/eprint/3932/1/03-C00778-001.pdf |