Range Restricted Interpolation Using Cubic Bézier Triangles.

A range restricted C1 interpolation local scheme to scattered data is derived. Each macro triangle of the triangulated domain is split into three mini triangles and the interpolating surface on each mini triangle is a cubic Bézier triangle. Sufficient conditions derived for the non-negativity of t...

Full description

Bibliographic Details
Main Authors: Kong, V.P., Ong, S.H., Saw, K.H.
Format: Conference or Workshop Item
Language:English
Published: 2004
Subjects:
Online Access:http://eprints.usm.my/9620/
http://eprints.usm.my/9620/1/Range_Restricted_Interpolation_Using_Cubic_Bezier_Triangles_%28PPSMatematik%29_2003.pdf
_version_ 1848870805918711808
author Kong, V.P.
Ong, S.H.
Saw, K.H.
author_facet Kong, V.P.
Ong, S.H.
Saw, K.H.
author_sort Kong, V.P.
building USM Institutional Repository
collection Online Access
description A range restricted C1 interpolation local scheme to scattered data is derived. Each macro triangle of the triangulated domain is split into three mini triangles and the interpolating surface on each mini triangle is a cubic Bézier triangle. Sufficient conditions derived for the non-negativity of these cubic Bézier triangles are expressed as lower bounds to the Bézier ordinates. The non-negativity preserving interpolation scheme extends to the construction of a range restricted interpolating surface with lower or upper constraints which are polynomial surfaces of degree up to three. The scheme is illustrated with graphical examples.
first_indexed 2025-11-15T15:30:01Z
format Conference or Workshop Item
id usm-9620
institution Universiti Sains Malaysia
institution_category Local University
language English
last_indexed 2025-11-15T15:30:01Z
publishDate 2004
recordtype eprints
repository_type Digital Repository
spelling usm-96202013-07-13T04:12:06Z http://eprints.usm.my/9620/ Range Restricted Interpolation Using Cubic Bézier Triangles. Kong, V.P. Ong, S.H. Saw, K.H. QA1-939 Mathematics A range restricted C1 interpolation local scheme to scattered data is derived. Each macro triangle of the triangulated domain is split into three mini triangles and the interpolating surface on each mini triangle is a cubic Bézier triangle. Sufficient conditions derived for the non-negativity of these cubic Bézier triangles are expressed as lower bounds to the Bézier ordinates. The non-negativity preserving interpolation scheme extends to the construction of a range restricted interpolating surface with lower or upper constraints which are polynomial surfaces of degree up to three. The scheme is illustrated with graphical examples. 2004-02 Conference or Workshop Item PeerReviewed application/pdf en http://eprints.usm.my/9620/1/Range_Restricted_Interpolation_Using_Cubic_Bezier_Triangles_%28PPSMatematik%29_2003.pdf Kong, V.P. and Ong, S.H. and Saw, K.H. (2004) Range Restricted Interpolation Using Cubic Bézier Triangles. In: WSCG'2004 , February 2-6,2004, Plzen, Czech Republic..
spellingShingle QA1-939 Mathematics
Kong, V.P.
Ong, S.H.
Saw, K.H.
Range Restricted Interpolation Using Cubic Bézier Triangles.
title Range Restricted Interpolation Using Cubic Bézier Triangles.
title_full Range Restricted Interpolation Using Cubic Bézier Triangles.
title_fullStr Range Restricted Interpolation Using Cubic Bézier Triangles.
title_full_unstemmed Range Restricted Interpolation Using Cubic Bézier Triangles.
title_short Range Restricted Interpolation Using Cubic Bézier Triangles.
title_sort range restricted interpolation using cubic bézier triangles.
topic QA1-939 Mathematics
url http://eprints.usm.my/9620/
http://eprints.usm.my/9620/1/Range_Restricted_Interpolation_Using_Cubic_Bezier_Triangles_%28PPSMatematik%29_2003.pdf