Biosynthesis And Characterization Of Poly(3-Hydroxybutyrate-Co-3- Hydroxyvalerate) From Cupriavidus Malaysiensis Usmaa1020 Using Glycerin Pitch As Main Carbon Source

Plastics are used in almost every part of modern life, from making aeroplanes, cars, and buildings to making clothes, shoes, packaging for food and drinks, and medical devices. As a result, plastic waste is gathered globally, worsening the effects on the ecosystem. Synthetic plastics/conventional pl...

Full description

Bibliographic Details
Main Author: Rozina, Rozina
Format: Thesis
Language:English
Published: 2022
Subjects:
Online Access:http://eprints.usm.my/60124/
http://eprints.usm.my/60124/1/24%20Pages%20from%20ROZINA.pdf
_version_ 1848884357980225536
author Rozina, Rozina
author_facet Rozina, Rozina
author_sort Rozina, Rozina
building USM Institutional Repository
collection Online Access
description Plastics are used in almost every part of modern life, from making aeroplanes, cars, and buildings to making clothes, shoes, packaging for food and drinks, and medical devices. As a result, plastic waste is gathered globally, worsening the effects on the ecosystem. Synthetic plastics/conventional plastics takes many years to disintegrate in nature, and incineration produces toxic substances and raises CO2 levels in the atmosphere, causing issues like global warming. As a result, alternatives to petrol-based polymers are being sought. Polyhydroxyalkanoates (PHAs) have been proposed as a feasible substitute for petrochemical-based polymers because of their biodegradable nature. In the present study, Cupriavidus malaysiensis USMAA1020, a Gram-negative bacterium was able to produce biodegradable polymer P(3HB-co- 3HV) by utilizing glycerin pitch which is a by-product of the biodiesel synthesis obtained during the transesterification as low-cost feedstock. The aim of the research was to screen various concentrations of glycerin pitch (5 g/L, 10 g/L, 15 g/L, 20 g/L, 25 g/L), 1-pentanol (0.03 wt% C, 0.06 wt% C, 0.09 wt% C, 0.12 wt% C), ammonium sulfate (0.8 g/L, 1.1 g/L, 1.4 g/L, 1.7 g/L, 2.0 g/L), and different precursors nonaoic acid, valeric acid, propionic acid, with respect to 1-pentanol at concentration of 0.06 wt%C. To enhance the production of PHA, oleic acid concentrations was used as a secondary carbon source.
first_indexed 2025-11-15T19:05:26Z
format Thesis
id usm-60124
institution Universiti Sains Malaysia
institution_category Local University
language English
last_indexed 2025-11-15T19:05:26Z
publishDate 2022
recordtype eprints
repository_type Digital Repository
spelling usm-601242024-03-12T01:47:25Z http://eprints.usm.my/60124/ Biosynthesis And Characterization Of Poly(3-Hydroxybutyrate-Co-3- Hydroxyvalerate) From Cupriavidus Malaysiensis Usmaa1020 Using Glycerin Pitch As Main Carbon Source Rozina, Rozina QH1-278.5 Natural history (General) Plastics are used in almost every part of modern life, from making aeroplanes, cars, and buildings to making clothes, shoes, packaging for food and drinks, and medical devices. As a result, plastic waste is gathered globally, worsening the effects on the ecosystem. Synthetic plastics/conventional plastics takes many years to disintegrate in nature, and incineration produces toxic substances and raises CO2 levels in the atmosphere, causing issues like global warming. As a result, alternatives to petrol-based polymers are being sought. Polyhydroxyalkanoates (PHAs) have been proposed as a feasible substitute for petrochemical-based polymers because of their biodegradable nature. In the present study, Cupriavidus malaysiensis USMAA1020, a Gram-negative bacterium was able to produce biodegradable polymer P(3HB-co- 3HV) by utilizing glycerin pitch which is a by-product of the biodiesel synthesis obtained during the transesterification as low-cost feedstock. The aim of the research was to screen various concentrations of glycerin pitch (5 g/L, 10 g/L, 15 g/L, 20 g/L, 25 g/L), 1-pentanol (0.03 wt% C, 0.06 wt% C, 0.09 wt% C, 0.12 wt% C), ammonium sulfate (0.8 g/L, 1.1 g/L, 1.4 g/L, 1.7 g/L, 2.0 g/L), and different precursors nonaoic acid, valeric acid, propionic acid, with respect to 1-pentanol at concentration of 0.06 wt%C. To enhance the production of PHA, oleic acid concentrations was used as a secondary carbon source. 2022-11 Thesis NonPeerReviewed application/pdf en http://eprints.usm.my/60124/1/24%20Pages%20from%20ROZINA.pdf Rozina, Rozina (2022) Biosynthesis And Characterization Of Poly(3-Hydroxybutyrate-Co-3- Hydroxyvalerate) From Cupriavidus Malaysiensis Usmaa1020 Using Glycerin Pitch As Main Carbon Source. Masters thesis, Perpustakaan Hamzah Sendut.
spellingShingle QH1-278.5 Natural history (General)
Rozina, Rozina
Biosynthesis And Characterization Of Poly(3-Hydroxybutyrate-Co-3- Hydroxyvalerate) From Cupriavidus Malaysiensis Usmaa1020 Using Glycerin Pitch As Main Carbon Source
title Biosynthesis And Characterization Of Poly(3-Hydroxybutyrate-Co-3- Hydroxyvalerate) From Cupriavidus Malaysiensis Usmaa1020 Using Glycerin Pitch As Main Carbon Source
title_full Biosynthesis And Characterization Of Poly(3-Hydroxybutyrate-Co-3- Hydroxyvalerate) From Cupriavidus Malaysiensis Usmaa1020 Using Glycerin Pitch As Main Carbon Source
title_fullStr Biosynthesis And Characterization Of Poly(3-Hydroxybutyrate-Co-3- Hydroxyvalerate) From Cupriavidus Malaysiensis Usmaa1020 Using Glycerin Pitch As Main Carbon Source
title_full_unstemmed Biosynthesis And Characterization Of Poly(3-Hydroxybutyrate-Co-3- Hydroxyvalerate) From Cupriavidus Malaysiensis Usmaa1020 Using Glycerin Pitch As Main Carbon Source
title_short Biosynthesis And Characterization Of Poly(3-Hydroxybutyrate-Co-3- Hydroxyvalerate) From Cupriavidus Malaysiensis Usmaa1020 Using Glycerin Pitch As Main Carbon Source
title_sort biosynthesis and characterization of poly(3-hydroxybutyrate-co-3- hydroxyvalerate) from cupriavidus malaysiensis usmaa1020 using glycerin pitch as main carbon source
topic QH1-278.5 Natural history (General)
url http://eprints.usm.my/60124/
http://eprints.usm.my/60124/1/24%20Pages%20from%20ROZINA.pdf