Pengkelasan Sel Kanser Pangkal Rahim Kepada Sel Normal Dan Tidak Normal Menggunakan Analisis Pembezalayan Dan Rangkaian Neural

The topic of this project is classification of cervical cells into normal and abnormal using 2 group discriminant analysis and neural network. The type of the neural network is multilayed perceptron (MLP) network using software MATLAB® 6.5 and discriminant analysis using software SPSS® 13.0. T...

Full description

Bibliographic Details
Main Author: Saidin, Mohammad Norrish
Format: Monograph
Language:English
Published: Universiti Sains Malaysia 2006
Subjects:
Online Access:http://eprints.usm.my/58764/
http://eprints.usm.my/58764/1/Pengkelasan%20Sel%20Kanser%20Pangkal%20Rahim%20Kepada%20Sel%20Normal%20Dan%20Tidak%20Normal%20Menggunakan%20Analisis%20Pembezalayan%20Dan%20Rangkaian%20Neural_Mohammad%20Norrish%20Saidin.pdf
_version_ 1848883987005571072
author Saidin, Mohammad Norrish
author_facet Saidin, Mohammad Norrish
author_sort Saidin, Mohammad Norrish
building USM Institutional Repository
collection Online Access
description The topic of this project is classification of cervical cells into normal and abnormal using 2 group discriminant analysis and neural network. The type of the neural network is multilayed perceptron (MLP) network using software MATLAB® 6.5 and discriminant analysis using software SPSS® 13.0. The system is built to classify some certain data into two classes, which are normal or abnormal cells. Data are using for this project is nucleus size, cytoplasm size, nucleus grey level and cytoplasm grey level. The data are separated into two sets; training data set and testing data set. There are 128 data in training data set and 72 data in testing data set. The neural network is trained using two types of learning algorithms, which is Levenberg-Marquardt and Back Propagation. The optimum value of epoch and hidden nodes for each learning algorithm are determined based on the highest accuracy obtained during training phases. For discriminant analysis, training data are used to simulate to obtain accuracy and cut-off point. From the result, the neural network and disriminant analysis show the 100% accuracy. As a conclusion, the neural network and discriminant analysis has high capability to classify the cervical cells into normal and abnormal.
first_indexed 2025-11-15T18:59:32Z
format Monograph
id usm-58764
institution Universiti Sains Malaysia
institution_category Local University
language English
last_indexed 2025-11-15T18:59:32Z
publishDate 2006
publisher Universiti Sains Malaysia
recordtype eprints
repository_type Digital Repository
spelling usm-587642023-06-01T08:38:11Z http://eprints.usm.my/58764/ Pengkelasan Sel Kanser Pangkal Rahim Kepada Sel Normal Dan Tidak Normal Menggunakan Analisis Pembezalayan Dan Rangkaian Neural Saidin, Mohammad Norrish T Technology TK Electrical Engineering. Electronics. Nuclear Engineering The topic of this project is classification of cervical cells into normal and abnormal using 2 group discriminant analysis and neural network. The type of the neural network is multilayed perceptron (MLP) network using software MATLAB® 6.5 and discriminant analysis using software SPSS® 13.0. The system is built to classify some certain data into two classes, which are normal or abnormal cells. Data are using for this project is nucleus size, cytoplasm size, nucleus grey level and cytoplasm grey level. The data are separated into two sets; training data set and testing data set. There are 128 data in training data set and 72 data in testing data set. The neural network is trained using two types of learning algorithms, which is Levenberg-Marquardt and Back Propagation. The optimum value of epoch and hidden nodes for each learning algorithm are determined based on the highest accuracy obtained during training phases. For discriminant analysis, training data are used to simulate to obtain accuracy and cut-off point. From the result, the neural network and disriminant analysis show the 100% accuracy. As a conclusion, the neural network and discriminant analysis has high capability to classify the cervical cells into normal and abnormal. Universiti Sains Malaysia 2006-03-01 Monograph NonPeerReviewed application/pdf en http://eprints.usm.my/58764/1/Pengkelasan%20Sel%20Kanser%20Pangkal%20Rahim%20Kepada%20Sel%20Normal%20Dan%20Tidak%20Normal%20Menggunakan%20Analisis%20Pembezalayan%20Dan%20Rangkaian%20Neural_Mohammad%20Norrish%20Saidin.pdf Saidin, Mohammad Norrish (2006) Pengkelasan Sel Kanser Pangkal Rahim Kepada Sel Normal Dan Tidak Normal Menggunakan Analisis Pembezalayan Dan Rangkaian Neural. Project Report. Universiti Sains Malaysia, Pusat Pengajian Kejuruteraan Elektrik dan Elektronik. (Submitted)
spellingShingle T Technology
TK Electrical Engineering. Electronics. Nuclear Engineering
Saidin, Mohammad Norrish
Pengkelasan Sel Kanser Pangkal Rahim Kepada Sel Normal Dan Tidak Normal Menggunakan Analisis Pembezalayan Dan Rangkaian Neural
title Pengkelasan Sel Kanser Pangkal Rahim Kepada Sel Normal Dan Tidak Normal Menggunakan Analisis Pembezalayan Dan Rangkaian Neural
title_full Pengkelasan Sel Kanser Pangkal Rahim Kepada Sel Normal Dan Tidak Normal Menggunakan Analisis Pembezalayan Dan Rangkaian Neural
title_fullStr Pengkelasan Sel Kanser Pangkal Rahim Kepada Sel Normal Dan Tidak Normal Menggunakan Analisis Pembezalayan Dan Rangkaian Neural
title_full_unstemmed Pengkelasan Sel Kanser Pangkal Rahim Kepada Sel Normal Dan Tidak Normal Menggunakan Analisis Pembezalayan Dan Rangkaian Neural
title_short Pengkelasan Sel Kanser Pangkal Rahim Kepada Sel Normal Dan Tidak Normal Menggunakan Analisis Pembezalayan Dan Rangkaian Neural
title_sort pengkelasan sel kanser pangkal rahim kepada sel normal dan tidak normal menggunakan analisis pembezalayan dan rangkaian neural
topic T Technology
TK Electrical Engineering. Electronics. Nuclear Engineering
url http://eprints.usm.my/58764/
http://eprints.usm.my/58764/1/Pengkelasan%20Sel%20Kanser%20Pangkal%20Rahim%20Kepada%20Sel%20Normal%20Dan%20Tidak%20Normal%20Menggunakan%20Analisis%20Pembezalayan%20Dan%20Rangkaian%20Neural_Mohammad%20Norrish%20Saidin.pdf