A situation assessment and prediction mechanism for network security situation awareness

Network intrusion attempts have reached an alarming level. Cisco's 2014 Security Report indicated that 50,000 network intrusions were detected and 80 million suspicious web requests were blocked daily. Hence, Intrusion Prevention System (IPS) had been chosen as a defence mechanism in many organ...

Full description

Bibliographic Details
Main Author: Leau, Yu Beng
Format: Thesis
Language:English
Published: 2016
Subjects:
Online Access:http://eprints.usm.my/52359/
http://eprints.usm.my/52359/1/LEAU%20YU%20BENG24.pdf
_version_ 1848882236570468352
author Leau, Yu Beng
author_facet Leau, Yu Beng
author_sort Leau, Yu Beng
building USM Institutional Repository
collection Online Access
description Network intrusion attempts have reached an alarming level. Cisco's 2014 Security Report indicated that 50,000 network intrusions were detected and 80 million suspicious web requests were blocked daily. Hence, Intrusion Prevention System (IPS) had been chosen as a defence mechanism in many organizations. However, the University of South Wales reported that seven big-brand IPS had failed to detect and block 34% - 49% of attacks in web-based applications. The accuracy of IPS can be improved if the network situation is also considered in preventing intrusion attempts. Knowledge about current and incoming network security situation is required before any precaution can be taken. Situation assessment and prediction are two main phases of Network Security Situation Awareness. The existing assessment models do not consider cost factor as an assessment criterion. Moreover, there has been a lack of standard guidelines to determine the importance of network assets. On prediction, training self-learning detectors are difficult due to incomplete and insufficient data. Furthermore, First-order One-variable grey model (GM(l, 1 )) has not been suitable to predict non-stationary random sequence. In addition, mean generation sequence depresses the model precision with delay error.
first_indexed 2025-11-15T18:31:43Z
format Thesis
id usm-52359
institution Universiti Sains Malaysia
institution_category Local University
language English
last_indexed 2025-11-15T18:31:43Z
publishDate 2016
recordtype eprints
repository_type Digital Repository
spelling usm-523592022-04-18T09:08:10Z http://eprints.usm.my/52359/ A situation assessment and prediction mechanism for network security situation awareness Leau, Yu Beng T1-995 Technology(General) Network intrusion attempts have reached an alarming level. Cisco's 2014 Security Report indicated that 50,000 network intrusions were detected and 80 million suspicious web requests were blocked daily. Hence, Intrusion Prevention System (IPS) had been chosen as a defence mechanism in many organizations. However, the University of South Wales reported that seven big-brand IPS had failed to detect and block 34% - 49% of attacks in web-based applications. The accuracy of IPS can be improved if the network situation is also considered in preventing intrusion attempts. Knowledge about current and incoming network security situation is required before any precaution can be taken. Situation assessment and prediction are two main phases of Network Security Situation Awareness. The existing assessment models do not consider cost factor as an assessment criterion. Moreover, there has been a lack of standard guidelines to determine the importance of network assets. On prediction, training self-learning detectors are difficult due to incomplete and insufficient data. Furthermore, First-order One-variable grey model (GM(l, 1 )) has not been suitable to predict non-stationary random sequence. In addition, mean generation sequence depresses the model precision with delay error. 2016-07 Thesis NonPeerReviewed application/pdf en http://eprints.usm.my/52359/1/LEAU%20YU%20BENG24.pdf Leau, Yu Beng (2016) A situation assessment and prediction mechanism for network security situation awareness. PhD thesis, Universiti Sains Malaysia.
spellingShingle T1-995 Technology(General)
Leau, Yu Beng
A situation assessment and prediction mechanism for network security situation awareness
title A situation assessment and prediction mechanism for network security situation awareness
title_full A situation assessment and prediction mechanism for network security situation awareness
title_fullStr A situation assessment and prediction mechanism for network security situation awareness
title_full_unstemmed A situation assessment and prediction mechanism for network security situation awareness
title_short A situation assessment and prediction mechanism for network security situation awareness
title_sort situation assessment and prediction mechanism for network security situation awareness
topic T1-995 Technology(General)
url http://eprints.usm.my/52359/
http://eprints.usm.my/52359/1/LEAU%20YU%20BENG24.pdf