Photodegradation Performances Of Low-Density Polyethylene Composites Loaded With Photocatalysts

Growing production and consumption plastic worldwide is currently resulting in a significant solid waste and is causing serious pollution problems. Various approach has been attempted and photodegradation seems to be the environmental benign approach. However, the degradation rate that has been achi...

Full description

Bibliographic Details
Main Author: Sutanto, Nelvi
Format: Thesis
Language:English
Published: 2019
Subjects:
Online Access:http://eprints.usm.my/48024/
http://eprints.usm.my/48024/1/Photodegradation%20Performances%20Of%20Low-Density%20Polyethylene%20Composites%20Loaded%20With%20Photocatalysts.pdf
_version_ 1848881041447583744
author Sutanto, Nelvi
author_facet Sutanto, Nelvi
author_sort Sutanto, Nelvi
building USM Institutional Repository
collection Online Access
description Growing production and consumption plastic worldwide is currently resulting in a significant solid waste and is causing serious pollution problems. Various approach has been attempted and photodegradation seems to be the environmental benign approach. However, the degradation rate that has been achieved is only in the range of 0.03 to 0.21 %/h. Therefore, in this work, an appropriate photocatalyst that could expedite the photodegradation rate of the polymer was developed based on zinc oxide (ZnO), titanium dioxide (TiO2) and graphitic carbon nitride (g-C3N4) by sol gel method. The effect of ZnO/TiO2 ratio and wt% of g-C3N4 was investigated. The best photocatalytic activity performed by photocatalyst ZnO/TiO2 with ratio of 3:1 that was incorporated with 10 wt% g-C3N4 denoted as 10C-3ZT was selected to fabricate LDPE composite films. The optimized photocatalyst is 10C-3ZT with following features: dominated by zincite phase and minor traces of c-Zn2Ti3O8 together g-C3N4, formation of heterojunctions within ZnO/g-C3N4 and c-Zn2Ti3O8/g-C3N4, mixture of spherical and rod shape particles, low band gap energy of 2.5 eV have remarkable reduced recombination of e-h in 10C-3ZT photocatalyst thus resulted in 99% degradation within 45 minutes with kinetic rate constant of 0.093 min-1. LDPE composite films with 3 different thickness (1 mm, 0.1 mm and 0.035 mm) was prepared with 10C-3ZT. Compression moulding was used to produce 1 mm composite films and wet casting method for films with 0.1 and 0.035 mm thickness. The weight % of 10C-3ZT was varied from 1 to 10 wt% and the properties of LDPE/10C-3ZT composite films were compared with pure LDPE by analysing the changes in weight loss, carbonyl index, tensile strength, percentage elongation, morphology, chemical structure, degree of crystallinity. The weight loss was further enhanced with 10 wt% PVA functionalized photocatalyst (10C-3ZT-10 wt%-PVA) in LDPE polymer matrix. The total weight loss of 96% was attained in 350 h. Carbonyl index up to 2 was achieved. Enhanced OH• released due to heterostructure formation, increase in amorphous region and PVA functionalization for water absorption resulted in substantially improvement in degradation of LDPE, which was 47 times faster than pure LDPE.
first_indexed 2025-11-15T18:12:43Z
format Thesis
id usm-48024
institution Universiti Sains Malaysia
institution_category Local University
language English
last_indexed 2025-11-15T18:12:43Z
publishDate 2019
recordtype eprints
repository_type Digital Repository
spelling usm-480242021-11-17T03:42:10Z http://eprints.usm.my/48024/ Photodegradation Performances Of Low-Density Polyethylene Composites Loaded With Photocatalysts Sutanto, Nelvi T Technology TA401-492 Materials of engineering and construction. Mechanics of materials Growing production and consumption plastic worldwide is currently resulting in a significant solid waste and is causing serious pollution problems. Various approach has been attempted and photodegradation seems to be the environmental benign approach. However, the degradation rate that has been achieved is only in the range of 0.03 to 0.21 %/h. Therefore, in this work, an appropriate photocatalyst that could expedite the photodegradation rate of the polymer was developed based on zinc oxide (ZnO), titanium dioxide (TiO2) and graphitic carbon nitride (g-C3N4) by sol gel method. The effect of ZnO/TiO2 ratio and wt% of g-C3N4 was investigated. The best photocatalytic activity performed by photocatalyst ZnO/TiO2 with ratio of 3:1 that was incorporated with 10 wt% g-C3N4 denoted as 10C-3ZT was selected to fabricate LDPE composite films. The optimized photocatalyst is 10C-3ZT with following features: dominated by zincite phase and minor traces of c-Zn2Ti3O8 together g-C3N4, formation of heterojunctions within ZnO/g-C3N4 and c-Zn2Ti3O8/g-C3N4, mixture of spherical and rod shape particles, low band gap energy of 2.5 eV have remarkable reduced recombination of e-h in 10C-3ZT photocatalyst thus resulted in 99% degradation within 45 minutes with kinetic rate constant of 0.093 min-1. LDPE composite films with 3 different thickness (1 mm, 0.1 mm and 0.035 mm) was prepared with 10C-3ZT. Compression moulding was used to produce 1 mm composite films and wet casting method for films with 0.1 and 0.035 mm thickness. The weight % of 10C-3ZT was varied from 1 to 10 wt% and the properties of LDPE/10C-3ZT composite films were compared with pure LDPE by analysing the changes in weight loss, carbonyl index, tensile strength, percentage elongation, morphology, chemical structure, degree of crystallinity. The weight loss was further enhanced with 10 wt% PVA functionalized photocatalyst (10C-3ZT-10 wt%-PVA) in LDPE polymer matrix. The total weight loss of 96% was attained in 350 h. Carbonyl index up to 2 was achieved. Enhanced OH• released due to heterostructure formation, increase in amorphous region and PVA functionalization for water absorption resulted in substantially improvement in degradation of LDPE, which was 47 times faster than pure LDPE. 2019-10-01 Thesis NonPeerReviewed application/pdf en http://eprints.usm.my/48024/1/Photodegradation%20Performances%20Of%20Low-Density%20Polyethylene%20Composites%20Loaded%20With%20Photocatalysts.pdf Sutanto, Nelvi (2019) Photodegradation Performances Of Low-Density Polyethylene Composites Loaded With Photocatalysts. PhD thesis, Universiti Sains Malaysia.
spellingShingle T Technology
TA401-492 Materials of engineering and construction. Mechanics of materials
Sutanto, Nelvi
Photodegradation Performances Of Low-Density Polyethylene Composites Loaded With Photocatalysts
title Photodegradation Performances Of Low-Density Polyethylene Composites Loaded With Photocatalysts
title_full Photodegradation Performances Of Low-Density Polyethylene Composites Loaded With Photocatalysts
title_fullStr Photodegradation Performances Of Low-Density Polyethylene Composites Loaded With Photocatalysts
title_full_unstemmed Photodegradation Performances Of Low-Density Polyethylene Composites Loaded With Photocatalysts
title_short Photodegradation Performances Of Low-Density Polyethylene Composites Loaded With Photocatalysts
title_sort photodegradation performances of low-density polyethylene composites loaded with photocatalysts
topic T Technology
TA401-492 Materials of engineering and construction. Mechanics of materials
url http://eprints.usm.my/48024/
http://eprints.usm.my/48024/1/Photodegradation%20Performances%20Of%20Low-Density%20Polyethylene%20Composites%20Loaded%20With%20Photocatalysts.pdf