Improved Local Line Binary Pattern (Illbp): An Improved Lbp-Based Biometric Descriptor For Face And Finger Vein Recognition

Face recognition under different illumination remains a challenging problem. The variations between the images of the same face due to illuminations are almost always being larger than image variations due to changes in face identity. For finger vein recognition, the recognition rate may be de...

Full description

Bibliographic Details
Main Author: Chaiwuh, Shing
Format: Thesis
Language:English
Published: 2013
Subjects:
Online Access:http://eprints.usm.my/45063/
http://eprints.usm.my/45063/1/Chaiwuh%20Shing24.pdf
_version_ 1848880224538722304
author Chaiwuh, Shing
author_facet Chaiwuh, Shing
author_sort Chaiwuh, Shing
building USM Institutional Repository
collection Online Access
description Face recognition under different illumination remains a challenging problem. The variations between the images of the same face due to illuminations are almost always being larger than image variations due to changes in face identity. For finger vein recognition, the recognition rate may be degraded due to low quality of finger vein images. This is because finger vein images are not always clear and can display irregular shadings. A theoretically simple, yet efficient technique, called Improved Local Line Binary Pattern (ILLBP) has been proposed in order to solve the problems. The descriptor can be used for both face and finger vein recognition. The effectiveness of the proposed technique is empirically demonstrated using Principal Component Analysis-k-Nearest Neighbor (PCA-kNN), Multiclass Support Vector Machine (Multiclass SVM) and Hamming Distance(HD) as the classifiers. Comparisons among other existing Local Binary Pattern (LBP) variants on the Yale Face Database B, Extended Yale Face Database B and our own finger vein database have been conducted. The advantages of our technique include higher accuracy compared to other LBP variants and fast computational time. The experimental results for face recognition showed that by using PCA-kNN, the best ILLBP (N = 15, P = 2) achieved a high recognition rate (89.24%) only slightly worse than the best LLBP with N = 17 (89.36%).
first_indexed 2025-11-15T17:59:44Z
format Thesis
id usm-45063
institution Universiti Sains Malaysia
institution_category Local University
language English
last_indexed 2025-11-15T17:59:44Z
publishDate 2013
recordtype eprints
repository_type Digital Repository
spelling usm-450632019-07-25T08:08:04Z http://eprints.usm.my/45063/ Improved Local Line Binary Pattern (Illbp): An Improved Lbp-Based Biometric Descriptor For Face And Finger Vein Recognition Chaiwuh, Shing TK1-9971 Electrical engineering. Electronics. Nuclear engineering Face recognition under different illumination remains a challenging problem. The variations between the images of the same face due to illuminations are almost always being larger than image variations due to changes in face identity. For finger vein recognition, the recognition rate may be degraded due to low quality of finger vein images. This is because finger vein images are not always clear and can display irregular shadings. A theoretically simple, yet efficient technique, called Improved Local Line Binary Pattern (ILLBP) has been proposed in order to solve the problems. The descriptor can be used for both face and finger vein recognition. The effectiveness of the proposed technique is empirically demonstrated using Principal Component Analysis-k-Nearest Neighbor (PCA-kNN), Multiclass Support Vector Machine (Multiclass SVM) and Hamming Distance(HD) as the classifiers. Comparisons among other existing Local Binary Pattern (LBP) variants on the Yale Face Database B, Extended Yale Face Database B and our own finger vein database have been conducted. The advantages of our technique include higher accuracy compared to other LBP variants and fast computational time. The experimental results for face recognition showed that by using PCA-kNN, the best ILLBP (N = 15, P = 2) achieved a high recognition rate (89.24%) only slightly worse than the best LLBP with N = 17 (89.36%). 2013-07 Thesis NonPeerReviewed application/pdf en http://eprints.usm.my/45063/1/Chaiwuh%20Shing24.pdf Chaiwuh, Shing (2013) Improved Local Line Binary Pattern (Illbp): An Improved Lbp-Based Biometric Descriptor For Face And Finger Vein Recognition. Masters thesis, Universiti Sains Malaysia.
spellingShingle TK1-9971 Electrical engineering. Electronics. Nuclear engineering
Chaiwuh, Shing
Improved Local Line Binary Pattern (Illbp): An Improved Lbp-Based Biometric Descriptor For Face And Finger Vein Recognition
title Improved Local Line Binary Pattern (Illbp): An Improved Lbp-Based Biometric Descriptor For Face And Finger Vein Recognition
title_full Improved Local Line Binary Pattern (Illbp): An Improved Lbp-Based Biometric Descriptor For Face And Finger Vein Recognition
title_fullStr Improved Local Line Binary Pattern (Illbp): An Improved Lbp-Based Biometric Descriptor For Face And Finger Vein Recognition
title_full_unstemmed Improved Local Line Binary Pattern (Illbp): An Improved Lbp-Based Biometric Descriptor For Face And Finger Vein Recognition
title_short Improved Local Line Binary Pattern (Illbp): An Improved Lbp-Based Biometric Descriptor For Face And Finger Vein Recognition
title_sort improved local line binary pattern (illbp): an improved lbp-based biometric descriptor for face and finger vein recognition
topic TK1-9971 Electrical engineering. Electronics. Nuclear engineering
url http://eprints.usm.my/45063/
http://eprints.usm.my/45063/1/Chaiwuh%20Shing24.pdf