Classification Of P300 Signals In Brain-Computer Interface Using Neural Networks With Adjustable Activation Functions

Brain-Computer Interface (BCI) employs brain’s Electroencephalograms (EEG) signals and Event-related potentials (ERP) such as P300 to provide a direct communication between human brain and computer. P300 speller application is a BCI that finds the location of target character using P300 signal...

Full description

Bibliographic Details
Main Author: Aslarzanagh, Seyed Aliakbar Mousavi
Format: Thesis
Language:English
Published: 2013
Subjects:
Online Access:http://eprints.usm.my/43934/
http://eprints.usm.my/43934/1/Seyed%20Aliakbar%20Mousavi%20Aslarzanagh24.pdf
_version_ 1848879933591388160
author Aslarzanagh, Seyed Aliakbar Mousavi
author_facet Aslarzanagh, Seyed Aliakbar Mousavi
author_sort Aslarzanagh, Seyed Aliakbar Mousavi
building USM Institutional Repository
collection Online Access
description Brain-Computer Interface (BCI) employs brain’s Electroencephalograms (EEG) signals and Event-related potentials (ERP) such as P300 to provide a direct communication between human brain and computer. P300 speller application is a BCI that finds the location of target character using P300 signals. This application tries to classify brain‘s P300 signals to find the correct character from character board. P300 speller paradigm has two main classification problems. The first problem is the detection of P300 signals from EEG data (classification of P300 signals). Detection of P300 signals is a challenging task due to presence of noise and artifacts in EEG data. The second problem is to correctly recognize the target characters based on P300 signals. Detecting P300 signals is equivalent to detection of a character by a user who was looking about 300 milliseconds before the signal detection. This study aims to classify P300 signals with higher accuracy and recognize the characters with lower character trials by using neural networks with adjustable activation function. The best neural networks model is obtained by conducting three experiments on three NN models which differ based on the activation function in the hidden layers and three standard classifiers. The performance of the best NN model and its classifiers also compared with other classification techniques such as ESVM, CNN and LDA in BCI. The results shows that neural network model NN3 with MoreletWavelet activation function and multi-classifier MultiNC have obtained highest accuracy in P300 classification and character recognition. It also shows that Sensitivity of P300 classification is better describing the ranking of NN models and classifiers in character recognition problem.
first_indexed 2025-11-15T17:55:06Z
format Thesis
id usm-43934
institution Universiti Sains Malaysia
institution_category Local University
language English
last_indexed 2025-11-15T17:55:06Z
publishDate 2013
recordtype eprints
repository_type Digital Repository
spelling usm-439342019-04-12T05:26:09Z http://eprints.usm.my/43934/ Classification Of P300 Signals In Brain-Computer Interface Using Neural Networks With Adjustable Activation Functions Aslarzanagh, Seyed Aliakbar Mousavi QA75.5-76.95 Electronic computers. Computer science Brain-Computer Interface (BCI) employs brain’s Electroencephalograms (EEG) signals and Event-related potentials (ERP) such as P300 to provide a direct communication between human brain and computer. P300 speller application is a BCI that finds the location of target character using P300 signals. This application tries to classify brain‘s P300 signals to find the correct character from character board. P300 speller paradigm has two main classification problems. The first problem is the detection of P300 signals from EEG data (classification of P300 signals). Detection of P300 signals is a challenging task due to presence of noise and artifacts in EEG data. The second problem is to correctly recognize the target characters based on P300 signals. Detecting P300 signals is equivalent to detection of a character by a user who was looking about 300 milliseconds before the signal detection. This study aims to classify P300 signals with higher accuracy and recognize the characters with lower character trials by using neural networks with adjustable activation function. The best neural networks model is obtained by conducting three experiments on three NN models which differ based on the activation function in the hidden layers and three standard classifiers. The performance of the best NN model and its classifiers also compared with other classification techniques such as ESVM, CNN and LDA in BCI. The results shows that neural network model NN3 with MoreletWavelet activation function and multi-classifier MultiNC have obtained highest accuracy in P300 classification and character recognition. It also shows that Sensitivity of P300 classification is better describing the ranking of NN models and classifiers in character recognition problem. 2013-10 Thesis NonPeerReviewed application/pdf en http://eprints.usm.my/43934/1/Seyed%20Aliakbar%20Mousavi%20Aslarzanagh24.pdf Aslarzanagh, Seyed Aliakbar Mousavi (2013) Classification Of P300 Signals In Brain-Computer Interface Using Neural Networks With Adjustable Activation Functions. Masters thesis, Universiti Sains Malaysia.
spellingShingle QA75.5-76.95 Electronic computers. Computer science
Aslarzanagh, Seyed Aliakbar Mousavi
Classification Of P300 Signals In Brain-Computer Interface Using Neural Networks With Adjustable Activation Functions
title Classification Of P300 Signals In Brain-Computer Interface Using Neural Networks With Adjustable Activation Functions
title_full Classification Of P300 Signals In Brain-Computer Interface Using Neural Networks With Adjustable Activation Functions
title_fullStr Classification Of P300 Signals In Brain-Computer Interface Using Neural Networks With Adjustable Activation Functions
title_full_unstemmed Classification Of P300 Signals In Brain-Computer Interface Using Neural Networks With Adjustable Activation Functions
title_short Classification Of P300 Signals In Brain-Computer Interface Using Neural Networks With Adjustable Activation Functions
title_sort classification of p300 signals in brain-computer interface using neural networks with adjustable activation functions
topic QA75.5-76.95 Electronic computers. Computer science
url http://eprints.usm.my/43934/
http://eprints.usm.my/43934/1/Seyed%20Aliakbar%20Mousavi%20Aslarzanagh24.pdf