Enhanced and automated approaches for fish recognition and classification system

Pengecaman dan pengelasan imej ikan dengan darjah ketepatan dan kecekapan yang tinggi boleh menjadi satu tugas yang sukar kerana ikan mempunyai persamaan yang sangat tinggi dengan latar belakangnya, kehilangan beberapa ciri ikan, dan kos komputan yang tinggi. Recognition and classification of fi...

Full description

Bibliographic Details
Main Author: Samma, Ali Salem Ali
Format: Thesis
Language:English
Published: 2011
Subjects:
Online Access:http://eprints.usm.my/43123/
http://eprints.usm.my/43123/1/Pages_from_ENHANCED_AND_AUTOMATED.pdf
_version_ 1848879743802277888
author Samma, Ali Salem Ali
author_facet Samma, Ali Salem Ali
author_sort Samma, Ali Salem Ali
building USM Institutional Repository
collection Online Access
description Pengecaman dan pengelasan imej ikan dengan darjah ketepatan dan kecekapan yang tinggi boleh menjadi satu tugas yang sukar kerana ikan mempunyai persamaan yang sangat tinggi dengan latar belakangnya, kehilangan beberapa ciri ikan, dan kos komputan yang tinggi. Recognition and classification of fish images with high degree of accuracy and efficiency can be a difficult task due to fish being very similar to the background, missing of some features and high cost of computation.
first_indexed 2025-11-15T17:52:05Z
format Thesis
id usm-43123
institution Universiti Sains Malaysia
institution_category Local University
language English
last_indexed 2025-11-15T17:52:05Z
publishDate 2011
recordtype eprints
repository_type Digital Repository
spelling usm-431232018-12-10T07:49:23Z http://eprints.usm.my/43123/ Enhanced and automated approaches for fish recognition and classification system Samma, Ali Salem Ali QA75.5-76.95 Electronic computers. Computer science Pengecaman dan pengelasan imej ikan dengan darjah ketepatan dan kecekapan yang tinggi boleh menjadi satu tugas yang sukar kerana ikan mempunyai persamaan yang sangat tinggi dengan latar belakangnya, kehilangan beberapa ciri ikan, dan kos komputan yang tinggi. Recognition and classification of fish images with high degree of accuracy and efficiency can be a difficult task due to fish being very similar to the background, missing of some features and high cost of computation. 2011-06 Thesis NonPeerReviewed application/pdf en http://eprints.usm.my/43123/1/Pages_from_ENHANCED_AND_AUTOMATED.pdf Samma, Ali Salem Ali (2011) Enhanced and automated approaches for fish recognition and classification system. PhD thesis, Universiti Sains Malaysia.
spellingShingle QA75.5-76.95 Electronic computers. Computer science
Samma, Ali Salem Ali
Enhanced and automated approaches for fish recognition and classification system
title Enhanced and automated approaches for fish recognition and classification system
title_full Enhanced and automated approaches for fish recognition and classification system
title_fullStr Enhanced and automated approaches for fish recognition and classification system
title_full_unstemmed Enhanced and automated approaches for fish recognition and classification system
title_short Enhanced and automated approaches for fish recognition and classification system
title_sort enhanced and automated approaches for fish recognition and classification system
topic QA75.5-76.95 Electronic computers. Computer science
url http://eprints.usm.my/43123/
http://eprints.usm.my/43123/1/Pages_from_ENHANCED_AND_AUTOMATED.pdf