Probabilistic contextual models for object class recognition in uncontrived images.

Konteks merupakan suatu elemen penting dalam mendapatkan penjelasan yang bererti untuk sesuatu imej bagi kedua-dua sistem visual biologi dan buatan. Tesis ini mencadangkan permodelan hubungan konteks di antara objek dunia nyata di dalam imej yang tidak dibuat-buat bagi meningkatkan prestasi pengecam...

Full description

Bibliographic Details
Main Author: Hasanat, Mozaherul Hoque Abul
Format: Thesis
Language:English
Published: 2011
Subjects:
Online Access:http://eprints.usm.my/43011/
http://eprints.usm.my/43011/1/Pages_from_Probabilistic_Contextual_Model_for_Object_Class_Recognition-2.pdf
_version_ 1848879715875553280
author Hasanat, Mozaherul Hoque Abul
author_facet Hasanat, Mozaherul Hoque Abul
author_sort Hasanat, Mozaherul Hoque Abul
building USM Institutional Repository
collection Online Access
description Konteks merupakan suatu elemen penting dalam mendapatkan penjelasan yang bererti untuk sesuatu imej bagi kedua-dua sistem visual biologi dan buatan. Tesis ini mencadangkan permodelan hubungan konteks di antara objek dunia nyata di dalam imej yang tidak dibuat-buat bagi meningkatkan prestasi pengecaman kelas objek. Dua model kebarangkalian dicadangkan iaitu Semantic Context Model (SCM) dan Spatial Context Model (SpCM) - untuk memodelkan hubungan kontekstual semantik dan ruangan peringkat tinggi. Context is a vital element in deriving meaningful explanation of an image for both biological, as well as, artificial vision systems. This thesis proposes to model contextual relation among real-world objects in uncontrived images in order to improve object class recognition performance. Two probabilistic models are proposed – Semantic Context Model (SCM), and Spatial Context Model (SpCM) to model high-level semantic and spatial contextual relations respectively.
first_indexed 2025-11-15T17:51:39Z
format Thesis
id usm-43011
institution Universiti Sains Malaysia
institution_category Local University
language English
last_indexed 2025-11-15T17:51:39Z
publishDate 2011
recordtype eprints
repository_type Digital Repository
spelling usm-430112018-11-26T06:51:37Z http://eprints.usm.my/43011/ Probabilistic contextual models for object class recognition in uncontrived images. Hasanat, Mozaherul Hoque Abul RM300-666 Drugs and their actions Konteks merupakan suatu elemen penting dalam mendapatkan penjelasan yang bererti untuk sesuatu imej bagi kedua-dua sistem visual biologi dan buatan. Tesis ini mencadangkan permodelan hubungan konteks di antara objek dunia nyata di dalam imej yang tidak dibuat-buat bagi meningkatkan prestasi pengecaman kelas objek. Dua model kebarangkalian dicadangkan iaitu Semantic Context Model (SCM) dan Spatial Context Model (SpCM) - untuk memodelkan hubungan kontekstual semantik dan ruangan peringkat tinggi. Context is a vital element in deriving meaningful explanation of an image for both biological, as well as, artificial vision systems. This thesis proposes to model contextual relation among real-world objects in uncontrived images in order to improve object class recognition performance. Two probabilistic models are proposed – Semantic Context Model (SCM), and Spatial Context Model (SpCM) to model high-level semantic and spatial contextual relations respectively. 2011-05 Thesis NonPeerReviewed application/pdf en http://eprints.usm.my/43011/1/Pages_from_Probabilistic_Contextual_Model_for_Object_Class_Recognition-2.pdf Hasanat, Mozaherul Hoque Abul (2011) Probabilistic contextual models for object class recognition in uncontrived images. PhD thesis, Universiti Sains Malaysia.
spellingShingle RM300-666 Drugs and their actions
Hasanat, Mozaherul Hoque Abul
Probabilistic contextual models for object class recognition in uncontrived images.
title Probabilistic contextual models for object class recognition in uncontrived images.
title_full Probabilistic contextual models for object class recognition in uncontrived images.
title_fullStr Probabilistic contextual models for object class recognition in uncontrived images.
title_full_unstemmed Probabilistic contextual models for object class recognition in uncontrived images.
title_short Probabilistic contextual models for object class recognition in uncontrived images.
title_sort probabilistic contextual models for object class recognition in uncontrived images.
topic RM300-666 Drugs and their actions
url http://eprints.usm.my/43011/
http://eprints.usm.my/43011/1/Pages_from_Probabilistic_Contextual_Model_for_Object_Class_Recognition-2.pdf