Probabilistic contextual models for object class recognition in uncontrived images.
Konteks merupakan suatu elemen penting dalam mendapatkan penjelasan yang bererti untuk sesuatu imej bagi kedua-dua sistem visual biologi dan buatan. Tesis ini mencadangkan permodelan hubungan konteks di antara objek dunia nyata di dalam imej yang tidak dibuat-buat bagi meningkatkan prestasi pengecam...
| Main Author: | |
|---|---|
| Format: | Thesis |
| Language: | English |
| Published: |
2011
|
| Subjects: | |
| Online Access: | http://eprints.usm.my/43011/ http://eprints.usm.my/43011/1/Pages_from_Probabilistic_Contextual_Model_for_Object_Class_Recognition-2.pdf |
| _version_ | 1848879715875553280 |
|---|---|
| author | Hasanat, Mozaherul Hoque Abul |
| author_facet | Hasanat, Mozaherul Hoque Abul |
| author_sort | Hasanat, Mozaherul Hoque Abul |
| building | USM Institutional Repository |
| collection | Online Access |
| description | Konteks merupakan suatu elemen penting dalam mendapatkan penjelasan yang bererti untuk sesuatu imej bagi kedua-dua sistem visual biologi dan buatan. Tesis ini mencadangkan permodelan hubungan konteks di antara objek dunia nyata di dalam imej yang tidak dibuat-buat bagi meningkatkan prestasi pengecaman kelas objek. Dua model kebarangkalian dicadangkan iaitu Semantic Context Model (SCM) dan Spatial Context Model (SpCM) - untuk memodelkan hubungan kontekstual semantik dan ruangan peringkat tinggi.
Context is a vital element in deriving meaningful explanation of an image for both biological, as well as, artificial vision systems. This thesis proposes to model contextual relation among real-world objects in uncontrived images in order to improve object class recognition performance. Two probabilistic models are proposed – Semantic Context Model (SCM), and Spatial Context Model (SpCM) to model high-level semantic and spatial contextual relations respectively. |
| first_indexed | 2025-11-15T17:51:39Z |
| format | Thesis |
| id | usm-43011 |
| institution | Universiti Sains Malaysia |
| institution_category | Local University |
| language | English |
| last_indexed | 2025-11-15T17:51:39Z |
| publishDate | 2011 |
| recordtype | eprints |
| repository_type | Digital Repository |
| spelling | usm-430112018-11-26T06:51:37Z http://eprints.usm.my/43011/ Probabilistic contextual models for object class recognition in uncontrived images. Hasanat, Mozaherul Hoque Abul RM300-666 Drugs and their actions Konteks merupakan suatu elemen penting dalam mendapatkan penjelasan yang bererti untuk sesuatu imej bagi kedua-dua sistem visual biologi dan buatan. Tesis ini mencadangkan permodelan hubungan konteks di antara objek dunia nyata di dalam imej yang tidak dibuat-buat bagi meningkatkan prestasi pengecaman kelas objek. Dua model kebarangkalian dicadangkan iaitu Semantic Context Model (SCM) dan Spatial Context Model (SpCM) - untuk memodelkan hubungan kontekstual semantik dan ruangan peringkat tinggi. Context is a vital element in deriving meaningful explanation of an image for both biological, as well as, artificial vision systems. This thesis proposes to model contextual relation among real-world objects in uncontrived images in order to improve object class recognition performance. Two probabilistic models are proposed – Semantic Context Model (SCM), and Spatial Context Model (SpCM) to model high-level semantic and spatial contextual relations respectively. 2011-05 Thesis NonPeerReviewed application/pdf en http://eprints.usm.my/43011/1/Pages_from_Probabilistic_Contextual_Model_for_Object_Class_Recognition-2.pdf Hasanat, Mozaherul Hoque Abul (2011) Probabilistic contextual models for object class recognition in uncontrived images. PhD thesis, Universiti Sains Malaysia. |
| spellingShingle | RM300-666 Drugs and their actions Hasanat, Mozaherul Hoque Abul Probabilistic contextual models for object class recognition in uncontrived images. |
| title | Probabilistic contextual models for object class recognition in uncontrived images. |
| title_full | Probabilistic contextual models for object class recognition in uncontrived images. |
| title_fullStr | Probabilistic contextual models for object class recognition in uncontrived images. |
| title_full_unstemmed | Probabilistic contextual models for object class recognition in uncontrived images. |
| title_short | Probabilistic contextual models for object class recognition in uncontrived images. |
| title_sort | probabilistic contextual models for object class recognition in uncontrived images. |
| topic | RM300-666 Drugs and their actions |
| url | http://eprints.usm.my/43011/ http://eprints.usm.my/43011/1/Pages_from_Probabilistic_Contextual_Model_for_Object_Class_Recognition-2.pdf |